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LECTURE 1

Linear Algebra

1. Matrix and vector operations

The first building block to construct a matrix is some field F. A field is defined
as follows.

Definition 1.1. A field is a set F endowed with two binary operations, a
multiplication · and an addition +. Both this operations map an ordered pair of
element of F to another element of F, F × F → F. These two operations have to
satisfy the following properties for each triplet a, b, c ∈ F:

Associativity: For both ◦ = + and ◦ = ·, then a ◦ (b ◦ c) = (a ◦ b) ◦ c.
Commutativity: For both ◦ = + and ◦ = ·, then a ◦ b = b ◦ a.
Existence of identities: There exists two special element in F, zero, de-

noted by 0, and one, denoted by 1, such that a+ 0 = a and a · 1 = a.
Inverse: For each a ∈ F there is an element, denoted by −a ∈ F, such that
a+ (−a) = 0. Similarly, for each a ∈ F \ {0} there is an element 1/a ∈ F
such that a · 1/a = 1.

Distributivity of · over +: a · (b+ c) = a · b+ a · c.
In the following we will often omit · in writing down the multiplication. The

abstract definition of field includes some sets of numbers we are familiar with, e.g.,
the set of rational numbers Q, the set of real numbers R and the set of complex
numbers C (notably, not the set of integer numbers Z). Once a field is given, a
matrix can be defined as an array of elements of such field.

Definition 1.2. A matrix A is an n×m array of entries Aij ≡ [A]ij from a
given field F, with i = 1, . . . , n and j = 1, . . . ,m. We denote by Mn×m(F) the set
of all such matrices. If dimensions of a matrix are equal, the matrix is called square.
A square matrix A is called diagonal if Aij = 0 for i 6= j. A diagonal matrix of
size n with ones on a diagonal is denoted by In and called identity matrix.

GivenA ∈Mn×m(F), we call introduce the transpose matrixA> ∈Mm×n(F),

such that [A>]ij = Aji. A square matrix A ∈ Mn×n(F) is symmetric if A = A>.
In particular, if F = R a symmetric matrix is sometimes called real symmetric. If
R = C, a special class of matrix is the family of Hermitian matrices, i.e., matrices
A such that A = A†, where A† is the Hermitian transpose matrix obtained from
A taking the transpose and the complex conjugation of all its elements. Note that
an Hermitian matrix with real entries is a real symmetric matrix.

Below we call a vector v ∈ Mn×1(F) ≡ Fn a matrix of dimension n × 1 (i.e.,
a “column” of n rows).

Given two matrices A,B ∈ Mn×m(F), the sum C = A + B of matrices is
defined as an element-wise operation

(1) Cij = Aij +Bij

5



6 1. LINEAR ALGEBRA

The product is instead defined as an operationMn×m(F)×Mm×n′(F)→Mn×n′(F)
so that

(2) C = AB ⇔ Cij =

m∑
k=1

AikBkj .

Observe that if C = AB, the matrix BA is not defined unless A and B are both
squared of the same dimension. Even in this case, however, AB 6= BA in general.
For example if A = ( 1 0

1 1 ) and B = ( 1 1
0 1 ), then AB = ( 1 1

1 2 ) but BA = ( 2 1
1 1 ).

Finally, for any matrix A ∈Mn×m(F), we have that InA = AIm = A.

2. Determinant and trace of square matrices

Let us now focus on the set Mn×n(F) of square matrices and let us introduce
two crucial scalar quantities that can be constructed using the entries of a square
matrix.

Definition 2.1 (formal). Given a matrix A ∈ Mn×n(F), its determinant is
given by

(3) detA =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Ai σ(i),

where the sum is taking over all permutations of elements (1, 2, . . . , n) and sgn(σ)
is a sign or permutation.

This definition looks very abstract. For calculation purposes it is more conve-
nient to use a different, but equivalent definition.

Definition 2.2 (inductive). The determinant of a square matrix A ∈Mn×n(F)
is provided by the so-called Laplace expansion alongs any row i

(4) detA =

n∑
j=1

(−1)i+jAij detA( 6i,6j).

Here the matrix A(6i,6j) is the (n− 1)× (n− 1) matrix obtained removing the ith row

and jth column from A, and detA(6i,6j) is called the (i, j)-minor of A.

If detA = 0 then A is singular. The reason for this nomenclature will be clear
below.

Theorem 2.1 (Properties of the determinant). Let A ∈Mn×n(F). Then

• if A is a diagonal matrix then detA =
∏n
i=1Aii.

• detA = detA> (and therefore all properties referred to columns can be
referred in terms of rows).

• For any constant c ∈ F, det(cA) = cn detA.
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• Suppose that a column Ak = λv + u, i.e., Aik = λUk + Vk. Then

detA = det

 A11 . . . A1k . . . A1n

...
...

...
...

...
An1 · · · Ank · · · Ann


= λ det

 A11 . . . U1 · · · A1n

...
...

...
...

...
An1 · · · Un · · · Ann

+ det

 A11 . . . Vk . . . A1n

...
...

...
...

...
An1 · · · Vn · · · Ann


It is said that the determinant is multilinear.

• If detA has two identical columns, then detA = 0.
• Let B ∈Mn×n(F), then detAB = detAdetB.

One of the consequences of the previous properties is that swapping two columns
(or two rows) makes a minus sign appear in front of the determinant, i.e., the de-
terminant is alternating,

det

 A11 . . . A1k . . . A1k′ . . . A1n

...
...

...
...

...
...

...
An1 · · · Ank · · · Ank′ · · · Ann


= −det

 A11 . . . A1k′ . . . A1k . . . A1n

...
...

...
...

...
...

...
An1 · · · Ank′ · · · Ank · · · Ann


Lemma 2.2. Let A ∈Mn×n(F) and C be its matrix of cofactors, i.e.,

Cij = (−1)i+j detA( 6i,6j).

Then if detA 6= 0, the inverse of A exists and is given by

A−1 =
1

detA
C>.

� It is possible to define a “pseudo–inverse matrix for non-square complex ma-
trices (i.e., matrices with F = C). Such inverse is called Moore-Penrose inverse
and is defined as follows. Suppose for simplicity that we work with complex
numbers, F = C, and that A ∈ Mn×m(C). The matrix A−1

MP ∈ Mm×n(C) is
the Moore-Penrose inverse of A if

(1) AA−1
MPA = A;

(2) A−1
MPAA

−1
MP = A−1

MP;

(3) AA−1
MP and A−1

MPA are both Hermitian.

It can be shown that this pseudo inverse exists and is unique, and coincides with
A−1 if A is square and non-singular.

As an example, consider the matrix A = ( 1
2 ). Its Moore-Penrose inverse is

equal to A−1
MP = (1/5, 2/5), which can be checked by direct calculations. It is easy

to see that

AA−1
MP =

(
1/5 2/5
2/5 4/5

)
, A−1

MPA = 1.

We conclude the section giving the following fundamental definition.
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Definition 2.3. For a square matrix A ∈Mn×n(F) we define its trace by

trA =

n∑
i=1

Aii.

Proposition 2.3. Let be A ∈Mn×n(C). Then

det eA = etrA .

3. Vector spaces

3.1. Definitions. Let us consider now the set of vectors V := Fn ≡Mn×1(F)
of column vectors. In this section, we will assume that F = R or F = C. This set
is a vector space over F, i.e., is a set of elements such that, given u,v ∈ Fn, then
αv + βu ∈ F for any α, β ∈ F. Given a set of K vectors {vk}k=1,...,K , its span is
the set

Span[{vk}k] =

{
K∑
k=1

αkvk : αk ∈ F ∀k

}
.

The set of K vectors {vk}Kk=1 is said to be linearly independent if the equation∑
k αkvk = 0 implies αk = 0 ∀k. A basis is a set of linearly independent vectors

which is maximal, i.e., such that adding any other set to the basis we obtain a set
that is not linearly independent. This also means that if {ek}k is a basis of V ,
V = Span[{ek}k]. The cardinality of a basis of V is the dimension of V , and all
basis have the same cardinality (if finite).

A vector space can be endowed with an inner product 〈•, •〉 : V × V → F, such
that

〈u,v〉 =

n∑
i=1

ūivi.

This inner product has many relevant properties.

• It is a sesquilinear map, 〈u, αv1 +βv2〉 = α〈u,v1〉+β〈u,v2〉, but 〈αu1 +
βu2,v〉 = ᾱ〈u1,v〉+ β̄〈u2,v〉.

• It is antisymmetric, 〈v,u〉 = 〈u,v〉.
The set Mn×n(F) is then a set of linear maps on V . Each A ∈ Mn×n(F)

maps a vector v ∈ V into another vector Av ∈ V . The importance of linear maps
motivated the study of their behavior when appearing inside inner products and
led to the concept of adjoint. Given a matrix A ∈ Mn×n(F), we can define the

adjoint of A as the matrix A† ∈Mn×n(C) such that, in the notation above,

〈u,Av〉 = 〈A†u,v〉.
It is easy to see that to obtain A† from A you just need to transpose A and take
the complex conjugate of all its elements: in other words, A† is the Hermitian
transpose of A, as the notation suggests.

3.1.1. The bra-ket notation. In many areas of modern physics people prefer
to use the so called bra-ket notations to emphasize either we consider column or
row vectors, so that the inner product 〈u,v〉 can be considered as a usual matrix
product between a row vector obtained from u and the column vector v.

Definition 3.1. Given a vector u, we denote u† (i.e., the transpose complex
conjugate) by the expression bra and write 〈u|. We use instead the expression ket
and write |v〉 to denote a column vector v ∈Mn×1(C).



4. SPECTRAL PROPERTIES OF SQUARE MATRICES 9

In this way row vectors and column vectors are graphically distinguished. The
product introduced above is rewritten as 〈u,v〉 = 〈u|v〉. The duality operation †
transforms a ket in a bra,

|a〉 †−→ 〈a|.

3.2. Rank of a matrix. We introduce now the concept of rank. First, let us
consider the matrix A ∈ Mn×m(F), and let us call a1, . . . ,am the m columns of
A,

(5) A =


A11 A12 A13

A21 A22 A23

A31 A32 A33︸︷︷︸
a1

A41 ︸︷︷︸
a2

A42 ︸︷︷︸
a3

A43


Using the column vectors we define the following space.

Definition 3.2. The linear span of the columns of a matrix is called column
space.

We can repeat the same argument with the rows of the matrix A and introduce
the row space in the same way. Each one of these two spaces has a dimension, called
column rank rc(A) for the column space and row rank rr(A) for the row space.
The following fundamental results holds

Theorem 3.1. For any matrix A, rc(A) = rr(A) ≡ r(A). The number r(A)
is called rank of A.

By definition, r(A) ≤ min{n,m}. In the case of a square matrix A of size n,
A is said to be full rank if r(A) = n.

4. Spectral properties of square matrices

4.1. Eigenvalues and eigenvectors. In this section, we introduce a funda-
mental concept of invariance under the action of a square matrix A. We will use
the braket notation.

Definition 4.1. Let |v〉 ∈ Mn×1(C) ≡ Cn be an n-dimensional vector and
A ∈Mn×n(C) be a square matrix. If the equation

A|v〉 = λ|v〉

has a solution for some λ ∈ C, and |v〉 6= |0〉, then we say λ is an eigenvalue of
A and |v〉 is a right eigenvector of A. Similarly, if we take a row vector 〈u| ∈
M1×n(C) then

〈u|A = λ〈u|,
defines, for some λ ∈ C, and 〈u| 6= 〈0|, a left eigenvector.

Observe that we distinguished between left and right eigenvalues but not be-
tween left and right eigenvalues. The reason is that left and right eigenvalues are
actually the same, as we will see in a moment.

Each eigenvalue λ corresponds to infinitely many eigenvectors (as an example,
if v is left eigenvector of A with eigenvalue λ, then cv is also left eigenvalue of A
with the same eigenvalue). Each eigenvalue corresponds to an invariant eigenspace
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whose dimension might be larger than 1. By definition, to find the set of eigenvalues
(and eigenvectors) we have to solve

(A− λIn) |v〉 = |0〉.
This equation has a nontrivial solution if, and only if

pA(λ) := det(A− λIn) = 0

(otherwise A−λIn would be invertible and we would find v = 0). The determinant
is a polynomial in λ of degree n, which is known as characteristic polynomial. In
general the polynomial pA(λ) has n roots (some of them possibly identical) in C.
We could repeat the same arguments using the equation for the left eigenvectors: we
would have found the same characteristic polynomial: this implies, as anticipated,
that left and right eigenvalues are the same. The following important proposition
holds.

Proposition 4.1. Hermitian matrices have only real eigenvalues. Moreover,
if |v〉 is a left eigenvector of an Hermitian matrix A, then 〈v| is a right eigenvector
of the same matrix, and vice versa.

Moreover, let |u〉 and |v〉 be two right eigenvectors of a Hermitian matrix A
corresponding to eigenvalues λ and µ respectively, with λ 6= µ. Then 〈u|v〉 = 0,
i.e., they are orthogonal.

There is one subclass of Hermitian matrices which is widely used in many
applications.

Definition 4.2. An Hermitian matrix A of size n is called positive definite if
for any vector |v〉 6= |0〉 we have 〈v|A|v〉 > 0.

Proposition 4.2. All eigenvalues of positive definite matrix are positive.

Finally, let us state an important theorem on square matrices with real entries.

Theorem 4.3 (O. Perron, F.G. Frobenius). Let A ∈ Mn×n(R) such that
Aij ≥ 0 ∀i, j ∈ {1, . . . , n}. Then there is an eigenvalue of A such that λPF ∈ R,
λPF ≥ 0 and the associated (left and right) eigenvectors have non-negative entries.
Moreover, for any other eigenvalue λ one has |λ| ≤ λPF.

4.2. Spectral decomposition. There are many ways to decompose a matrix
and the choice usually depends on the problem that has to be solved. Here we will
discuss perhaps the most fundamental, the spectral decomposition.

Theorem 4.4 (Matrix spectral decomposition). Let A ∈ Mn×n(C) and sup-
pose that there are n linearly independent right eigenvectors, |v1〉, . . . , |vn〉. Then
A can be factorized as

A = QΛQ−1

where Λ = diag (λ1, . . . , λn) is a diagonal matrix having Λij = λiδij and Q is the
matrix whose j-th column is equal to |vj〉.

Not any matrix can be decomposed into such a product: indeed, the condition
of having n linearly independent eigenvectors is essential, and this is not true for
any square matrix on C. If A has the spectral decomposition described above, then
any integer power of A can be easily calculated as

Ak = QΛkQ−1.
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The spectral decomposition recasts a matrix in terms of its eigenvalues and eigen-
vectors. This representation turns out to be enormously useful. We additionally
specify the properties of the eigenvectors in the case of Hermitian matrices.

Theorem 4.5 (Spectral decomposition for real-symmetric matrices). Let A
be any real symmetric matrix of size n with eigenvalues λ1, . . . , λn and corre-
sponding orthonormal eigenvectors |v1〉, . . . , |vn〉. Let Q be a matrix with columns
|v1〉, . . . , |vn〉. Then, in the notation above,

A = QΛQ> =

n∑
k=1

λk|vk〉〈vk|.

The matrix Q is orthogonal, i.e. QQ> = Q>Q = In.

Theorem 4.6 (Spectral decomposition for Hermitian matrices). Let A be any
Hermitian matrix of size n with eigenvalues λ1, . . . , λn and corresponding orthonor-
mal eigenvectors |v1〉, . . . , |vn〉. Let U be a matrix with columns |v1〉, . . . , |vn〉.
Then

A = UΛU † =

n∑
k=1

λk|vk〉〈vk|.

The matrix U is unitary, i.e. UU † = U †U = In. In the special case in which A
is real symmetric, then the orthonormal eigenvectors are vectors of real quantities
and the matrix U is an orthogonal matrix.

4.3. Functions overMn×n(C). Assume that we have some analytic function
f : C → C. How could we define f(A) for A ∈ Mn×n(C)? This is an easy
question if f is a polynomial, but less obvious if it is, e.g., an exponential. However,
if A is diagonalizable as A = QΛQ−1, then for any integer power k we have
Ak = QΛkQ−1. Now let us use Taylor expansion of function f(x) around zero.
Assuming that f is analytic in a neighbourhood of the origin, we can write

f(z) =

∞∑
k=0

akz
k.

It is natural to define f(A) as

f(A) =

∞∑
k=0

akQΛkQ−1 = Q f(Λ)Q−1.

Λ is a diagonal matrix with Λij = λiδij , so that [Λk]ij = λki δij . As a result,

f (Λ) = diag (f (λ1) , . . . , f (λn))

so that we can give the following definition

Definition 4.3. Let f : C → C be an analytic function around the origin.
Then for any diagonalizable matrix A = QΛQ−1 we define

f (A) := Q diag (f (λ1) , . . . , f (λn)) Q−1.
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 Example Let us calculate exp(A) with

A =

(
1 0
−4/3 2

)
.

First we need to find eigenvalues and corresponding eigenvectors. To find the eigenvalues,
we write det (A− λI2) = 0 to get λ1 = 1 and λ2 = 2. The right eigenvalues can be found
as |v1〉 =

(
3
4

)
and |v1〉 =

(
0
1

)
. Then taking

Q =

(
3 0
4 1

)
, Λ =

(
1 0
0 2

)
,

we obtain A = QΛQ−1. Therefore,

exp (A) = Qdiag
(
e, e2)Q−1 =

(
e 0

4
3

(
e− e2

)
e2

)
.


 Example For non-diagonalizable functions there is no general recipe, however some-
times it is still possible to calculate corresponding values. Let us take

A =

(
1 1
0 1

)
,

and f(z) = ez. We will try to approach this problem by using Taylor series expansion.
But we need to find a way of calculating integer powers of matrix A. Several first powers
are easy to get and equal to

A2 =

(
1 2
0 1

)
, A3 =

(
1 3
0 1

)
, A4 =

(
1 4
0 1

)
, etc.

One can now guess (and proof by induction) that

Ak =

(
1 k
0 1

)
.

Therefore,

exp (A) =

∞∑
k=0

1

k!

(
1 k
0 1

)
= eA.

Exercises

(1) Calculate the determinant of the following Vandermonde matrix
1 x1 x2

1 x3
1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

1 x4 x2
4 x3

4.


Try to generalize the last determinant to the case of any matrix size.

(2) Prove Proposition 2.3 for any real symmetric (or Hermitian) matrix A.
Hint: use the definition of matrix exponent via its spectral decomposition.



LECTURE 2

Calculus

1. Infinite series, power series and Taylor series expansion

Definition 1.1. Given an infinite ordered sequence of number

(an)n = (a1, . . . , ak, . . . ), ak ∈ F for all k,

the corresponding infinite series is an expression of the form

a1 + · · ·+ ak + . . . :=

∞∑
k=1

ak.

The elements of the sequence can belong to a set that is not a field: it is indeed
enough to have the structure of abelian group. This is for example the case of
Mn×m(F) with the operation of matrix addition. In the following, we will focus on
sequence of real numbers, i.e., F = R. The case F = C is easily obtained observing
that a series of complex number can be obtained considering separately a series
of their real and imaginary part. Similarly, a series of matrices Mn×m(C) can be
reduced to a series of reals looking at the sums component-wise.

It is easy to think to series corresponding to values of the sum that is not a finite
quantity, for example

∑
k∈N k. On the other hand, we would like to give a more

precise definition of what is the “sum” of the series when it converges (somehow)
to a finite number. This can be formally defined defined by using the following

Definition 1.2. A partial sum of an infinite series S =
∑∞
k=1 ak is the quantity

Sn =

n∑
k=1

ak

for any n ≥ 1. The series S =
∑∞
k=1 ak is said to be convergent if

S = lim
n→∞

Sn

exists finite. This limit is called the sum of series. The series is otherwise said to
be divergent.


 Example For a series S =
∑∞
k=1 a

−k with a > 1 we have Sn = 1−a−n
a−1

so that

S = limn→+∞ Sn = 1
a−1

.


 Example For a series S =
∑∞
k=1 k we have Sn = n(n+1)

2

n→+∞−−−−−→ +∞ and the series
diverges.

13
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One of the main consequences of the above definition is that there is an im-
portant, necessary condition for a series to be convergent. Indeed, if Sn → S, then
Sn − Sn−1 = an → 0 for n → +∞ This is however not a sufficient condition, a
classical example being the harmonic series.


 Example: the harmonic series The harmonic series is
∞∑
k=1

1

k
.

In this series an → 0 but the series is divergent. Indeed,

S2n − Sn =

2n∑
k=n+1

1

k
>

2n∑
n=n+1

1

2n
=

1

2
,

which means that the sequence SN does not converge to a limit.

Below we state several tests which can be used to determine whether a real
series is convergent or divergent.

Theorem 1.1 (The limit comparison test). If both ak, bk ≥ 0 and if limk→∞
ak
bk

exists, then either both series
∑∞
k=1 ak and

∑∞
k=1 bk are convergent or both series

are divergent.

Theorem 1.2 (The n-th root test). For a series S =
∑∞
k=1 ak, if

lim sup
k→∞

k
√
|ak| < 1

then the series converges. On the other hand, if

lim sup
k→∞

k
√
|ak| > 1

the series diverges.

Theorem 1.3 (The ratio test). For a series S =
∑∞
k=1 ak, if

lim sup
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ < 1

then the series converges. On the other hand, if

lim sup
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ > 1

the series diverges.

In both Theorems 1.2 and 1.3 one can change lim supk bk to the proper limit
limk bk as long as it exists. We draw attention to the fact that in Theorems 1.2 and
1.3 certain cases are omitted, and, specifically when the limits are equal to one, the
root and the ratio tests are both inconclusive.


 Example Let us consider series S =
∑∞
k=1 sin kx for x ∈ R. The k-th term of the

series is equal to sin kx and obviously doesn’t converge to 0 if x is not a multiple of π. But
if x = kπ for some k ∈ Z, then all terms in the series are zeros and the series converges.
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 Example The series S =
∑∞
k=1

k2

(2+ 1
k )k

converges. This can be seen using the root

test. Indeed,

k
√
ak =

(
k
√
k
)2

2 + 1
k

→ 1

2
,

which means that the series is convergent.

1.1. Power series. Let us now focus on a special type of series, of great
relevance for applications.

Definition 1.3. A power series is a formal expression of the form

S(x) =

∞∑
k=k0

ck(x− α)k

for some α ∈ R and some k0 ∈ Z.

If we fix x, a power series is a usual series of the type
∑
k≥k0

ak with ak =

ck(x−α)k and, in this sense, to S(x) as family of series whose elements are labeled
by x. The n-th root test tells us that that the power series is convergent if

|x− α| <
(

lim sup
k→∞

k
√
|ck|
)−1

and diverges if

|x− α| >
(

lim sup
k→∞

k
√
|ck|
)−1

.

This means that there is a radius of convergence of the series.

Definition 1.4. The radius of convergence of a power series S(x) =
∑∞
k=k0

ck(x−
α)k is a non-negative number R such that the series converges for |x−α| < R, where

(6) R =

(
lim sup
k→∞

k
√
|ck|
)−1

.

The radius can be computed also using

(7) R =

(
lim sup
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣)−1

when this limit exists. The open ball |x − α| < R is called ball of convergence
B(α,R).

Note that on the boundary |x−α| < R we cannot give any information by this
method. If R = 0 then the series diverges for all x 6= α. On the other hand, if
R = ∞ then the series converges for all x ∈ R. Finally, we remark here that the

limit R =
(

lim supk→∞

∣∣∣ ck+1

ck

∣∣∣)−1

is often simpler to compute, but it only exists if

the power series has nonzero consecutive terms.
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 Example Let us find radius and ball of convergence for

S(x) =

∞∑
n=1

32nn!3

(3n)!
(x− 1)n .

Using (7) we obtain

R =

(
lim sup
n→∞

∣∣∣∣ 9 (n+ 1)3

(3n+ 1) (3n+ 2) (3n+ 3)

∣∣∣∣)−1

= 3.

Therefore, series is convergent for x ∈ (−2, 4).

A convergent power series defines a function S(x) inside its ball of convergence.
Let us assume from now on that k0 = 0. Proceeding in a heuristic way, we can
observe that

dS(x)

dx
=

∞∑
k=1

ckk(x− α)k−1

and more generally

dn S(x)

dxn
=

∞∑
k=n

ckk!

(k − n)!
(x− α)k−n

This implies that

S(n)(α) :=
dn S(x)

dxn

∣∣∣∣
x=α

= cnn! =⇒ cn =
1

n!

dn S(x)

dxn

∣∣∣∣
x=α

.

We may wonder if, given a function f , we can use this recipe to perform the opposite
operation, i.e., construct a series converging to f in some part of its domain given
f . The answer is yes and such a series can be constructed using a Taylor expansion.

Definition 1.5. The Taylor series around the point x = α of an infinitely
differentiable function f(x) ∈ C∞ (B(α,R)) is given by

f(x) =

∞∑
k=0

f (k)(α)

k!
(x− α)

k
.


 Example Let us consider function f(x) = ex and find its Taylor series expansion in

around point x = 0. For any k ≥ 0 we have f (k)(x) = ex. Therefore,

f(x) =

∞∑
n=0

xn

n!
.


 Example Sometimes it is easier to find Taylor series expansion of a part of the
function and then work out the whole series. For example let us take f(x) = ex −x−1

x2

around x = 0. Instead of working with the entire entire expression, if we take Taylor
series of the numerator

ex−x− 1 =

∞∑
k=0

xk

k!
− x− 1 =

∞∑
k=2

xk

k!
=

∞∑
k=0

xk+2

(k + 2)!
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and then divide it by x2, we will easily get an answer

f(x) =

∞∑
k=0

xk

(k + 2)!
.

One of the main applications of the Taylor series expansion is the approximation
of a given function f by a polynomial in some region of the domain of f . The
following theorem provides a measure of the quality of this approximation.

Theorem 1.4 (Taylor). Let f(x) ∈ Cn+1 (B (α,R)). Then for any x ∈ B (α,R)

f(x) =

n∑
k=0

f (k) (α)

k!
(x− α)

k
+Rn+1(x),

where the remainder is such that

Rn+1(x) =
f (n+1)(X)

(n+ 1)!
(x− α)n+1,

for some X ∈ B (α,R). This means that

|Rn+1(x)| ≤
maxX∈B(α,R)

∣∣f (n+1)(X)
∣∣

(n+ 1)!
|x− α|n+1

.


 Example Let us find value of ez, z > 0, with an error not more than ε = 0.01. We
will use Taylor series expansion of f(x) = ex in around 0. This means that we want the
reminder to be less then ε focusing on the ball B(0, z). In other words, we want n such
that

maxX∈B(0,z) eX zn+1

(n+ 1)!
=

ez zn+1

(n+ 1)!
< ε

For example, for z = 0.2 this is satisfied for n = 2. Indeed in this case

1 + 0.2 +
(0.2)2

2
= 1.22

to be compared with the exact value 1.2214027581601698339210 . . .

We conclude this brief paragraph on power series with the following

Definition 1.6. A function which can be locally written as a convergent power
series in its entire domain is called an analytic function.

This means that f is anaylitic if for any α in the domain of f , it can be written
as a Taylor series within B(α,R) for a nonzero R convergent for some non-zero
radius R. In this case, as we can always find a convergent power series expansion,
then the function f is continuous and differentiable in all points of its domain.

2. Some tools for integration

2.1. Changing variables in multidimensional integrals. In this section
we recall how to perform a change of variable when preforming multivariate inte-
grals. Given a function f : Rm → Rn, in the following we will use the notation

∂νf
µ(x) :=

∂fµ(x)

∂xν
.

Let us first introduce
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Definition 2.1 (Jacobian). Let f : Rm → Rn be a vector valued function.
Matrix Jf of all first order partial derivatives of function f is called Jacobian
matrix, i.e.

Jf (x) =


∂1f

1(x) ∂2f
1(x) . . . ∂mf

1(x)
∂1f

2(x) ∂2f
2(x) . . . ∂mf

1(x)
...

...
. . .

...
∂1f

n(x) ∂2f
n(x) . . . ∂mf

n(x)

 .

If n = m, the determinant of the Jacobian matrix is simply called Jacobian.

The following theorem provides a recipe to perform a change of variable in
multivariate integrals.

Theorem 2.1. Let D be an open set in Rn and φ : D → Rn an injective
differentiable function with continuous partial derivatives, the Jacobian of which is
non-zero for every x ∈ D. Then for any real-valued, compactly supported, contin-
uous function f , with support contained in φ(D), we have∫

φ(D)

f(x) dx =

∫
D

f (φ(y)) |detJφ(y)|dy,

where Jφ is the Jacobian of function φ and dx =
∏n
j=1 dxj, dy =

∏n
j=1 d yj.

Corollary 2.2. Let D = Rn and A ∈Mn×n(R), so that we want to perform
the change of variable φ : x 7→ Ax. Then Jφ = A and corresponding change of
variables formula will take the form∫

Rn

f(x) dx = |detA|
∫
Rn

f (Ay) dy.


 Example: Polar coordinates change Let us calculate the area of the domain

D = {(x, y) ∈ R2 : x2 + y2 ≥ 1 and
(
x2 + y2)2 ≤ 2

(
x2 − y2)

By the definition of area, we have

area(D) =

∫
D

dx d y.

In the above integral, we perform a change of variables to polar ones

φ :

(
x
y

)
7→
(
r cosϕ
r sinϕ

)
with r ∈ R+ and ϕ ∈ [−π, π). In this new set of variables the domain is written as

D = {(r cosϕ, r sinϕ) ∈ R2 : r2 ≥ 1 and r2 ≤ 2 cos 2ϕ and ϕ ∈ [−π, π]}
Combining all the above we get

area(D) = 2

π∫
−π

θ(cos 2ϕ) dϕ

√
2 cos 2ϕ∫
1

d r |detJφ(r, ϕ)| .

Calculating the Jacobian we get

detJφ(r, ϕ) =

∣∣∣∣ ∂rx ∂ry
∂ϕx ∂ϕy

∣∣∣∣ =

∣∣∣∣ cosϕ sinϕ
−r sinϕ r cosϕ

∣∣∣∣ = r.
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And finally

area(D) = 2

π/6∫
−π/6

dϕ

√
2 cos 2ϕ∫
1

r d r =

π/6∫
−π/6

(2 cos 2ϕ− 1) dϕ =
√

3− π

3
.

2.2. Single and multi variable Gaussian integrals. In this section we
discuss several examples of the integrals containing exponents of quadratic forms
in Rn, i.e., expressions of the type

L(x) = 〈x,Ax〉,

where A is a real symmetric matrix in Mn×n(R). Observe that the assumption
of having A real symmetric is not restrictive: one can also easily get that for any

non symmetric matrix A 〈x,Ax〉 =
〈
x, A+A>

2 x
〉

, where obviously A+A>

2 is now

symmetric.

Definition 2.2. For any quadratic form in Rn with associated real positive
symmetric matrix A and function f : Rn → R we define Gaussian integral of
general form by

I (f ;A) =

∫
Rn

f(x) e−
1
2 〈x,Ax〉 dx.

Below we state some well-known results on Gaussian integrals without proofs.

• If f(x) ≡ 1 for all x ∈ Rn,

(8)

∫
Rn

e−
1
2 〈x,Ax〉 dx =

(2π)
n
2

√
detA

and in particular

∫
R

e−
1
2Ax

2

dx =

√
2π

A
.

• If f(x) = e〈b,x〉 for some n-dimensional vector b, then

(9)

∫
Rn

e〈b,x〉−
1
2 〈x,Ax〉 dx =

(2π)
n
2 e〈b,A

−1b〉
√

detA
,

in particular

∫
R

ebx−
Ax2

2 dx =

√
2π

A
e
b2

2A .

• f(x) is a product of even number of coordinates∫
Rn

xjxk e−
1
2 〈x,Ax〉 dx =

(2π)
n
2 [A−1]j,k√
detA

, in particular

∫
R

x2 e−
Ax2

2 dx =

√
2π

A3
.

∫
Rn

2m∏
j=1

xkj e−
1
2 〈x,Ax〉 dx =

(2π)
n
2

√
detA

1

2mm!

∑
σ∈S2m

m∏
j=1

[A−1]kσ(2j−1),kσ(2j)
.
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2.3. Gaussian linearisation or Hubbard-Stratonovich trick. The so-
called Hubbard-Stratonovich transformation in dimension n = 1 is simply a simple
one-dimensional Gaussian integral involving complex quantities. The main advan-
tage of the formula is the fact that transforms an exponent of quadratic form in x
into another exponent which is linear in x by introducing new auxiliary variables.

Proposition 2.3 (Hubbard-Stratonovich transformation). For any x,A ∈ C
such that <A > 0

exp

{
−Ax

2

2

}
=

1√
2πA

∞∫
−∞

exp

{
− y

2

2A
+ ixy

}
d y.

The interesting aspect of this identity is that can be generalised to various
cases in which, for example, x is a complex object such as an operator. Some-
times the Hubbard-Stratonovich formula is also used to reduce exponential of x4

to exponential of x2.

3. Asymptotic analysis

Asymptotic approximation is an important topic in applied analysis, and its
applications permeate many fields in science and engineering such as fluid mechan-
ics, electromagnetism, diffraction theory, and statistics. In analysis and applied
mathematics, one frequently comes across problems concerning the determination
of the behaviour of a function as one of its parameters tends to a specific value, or
of a sequence as its index tends to infinity. Thus, for instance, results such as

log n! ∼
(
n+

1

2

)
log n− n+

1

2
log 2π,

called Stirling’s approximation. The twiddle sign ∼ is used to mean that the quo-
tient of the left-hand side by the corresponding right-hand side approaches 1 as
n→∞. The present subject of asymptotics deals with functions that are express-
ible in the forms of definite integrals or contour integrals. A typical example in this
area is given by the integral

In =

b∫
a

φ(x) (ψ(x))
n

dx,

where φ(x) and ψ(x) are continuous functions defined on the interval [a, b] and
ψ(x) is positive there. The main subject of the following is to build an asymptotic
expansion for such integrals. First we define an asymptotic scale, and then give the
formal definition of an asymptotic expansion.

Definition 3.1. If {φn (z)}∞n=0 is a sequence of continuous functions on some
domain Ω ⊂ C, and if z0 (may be taken to be infinity) is a limit point of the domain,
then the sequence constitutes an asymptotic scale if for every n,

φn+1 (z) = o(|φn (z)|) when z → z0.

In other words, a sequence of functions is an asymptotic scale if each function in
the sequence grows strictly slower (in the limit z → z0) than the preceding function.
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If f is a continuous function on the domain of the asymptotic scale, then f has an
asymptotic expansion of order N with respect to the scale as a formal series

f (z) ∼
N−1∑
n=0

anφn (z) ,

for some coefficients an, if

f (z)−
N−1∑
n=0

anφn (z) = O (|φN (z)|) , when z → z0.

3.1. Laplace method. Steepest descent (or ‘saddle-point’) integration is a
method for dealing with integrals of the following type

IN [f, g] =

∫
Ω

g(x) e−Nf(x) dx

with Ω ⊆ Rn, f(x) and g(x) continuous, of which f is bounded from below and
g is N -independent, and with N ∈ N positive and large. We first take f(x) to be
real-valued; this is the simplest case, for which finding the asymptotic analysis of
IN goes back to Laplace. We assume that f(x) can be expanded in a Taylor series
around its (assumed unique) minimum f(x?) with x? ∈ Ω, i.e.

f(x) = f(x?) +
1

2

〈
x− x?,Hf (x?) (x− x?)

〉
+O(‖x− x?‖3),

where

Hf (x?) := Hessx?(f) =

(
∂2f

∂xi∂xj

)∣∣∣∣
x=x?

is the local n × n curvature matrix and, by hypothesis, Hf (x?) > 0 being x? a
minimum. If the integral IN exists for every N > N0, for some N0, inserting Taylor
expansion into it we obtain

IN [f, g] = e−Nf(x?)

∫
Ω

g(x) e−
1
2N〈x−x?,Hf (x?)(x−x?)〉+O(N‖x−x?‖3) dx

One can now see, that the biggest contribution comes from a small neighbourhood
of x?, as if x moves out of it the integrand decreases exponentially. Passing to new
variables x = x? + y√

N
gives

IN [f, g] = N−
n
2 e−Nf(x?)

∫
Ω′

g

(
x? +

y√
N

)
e
− 1

2 〈y,Hf (x?)y〉+O
(
N−

1
2 |y|3

)
dy.

The last Gaussian integral can be approximated to the first order by

g (x?)

∫
Rp

e−
1
2 〈y,Hf (x?)y〉 dy =

g (x?) (2π)
n
2√

detHf (x?)
.

This summarizes to
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Theorem 3.1. Let f(x) and g(x) be two real-valued continuous functions de-
fined on Ω ⊆ Rn. Assume that f(x) attains its absolute minimum at some internal
point x? ∈ Ω. Then the integral

IN [f, g] =

∫
Ω

g(x) e−Nf(x) dx,

is approximately equal to

IN [f, g] ≈
(

2π

N

)n
2 g (x?)√

detHf (x?)
e−Nf(x?) .

From this latter expansion we can obtain two important identities.

− lim
N→∞

1

N
ln

∫
Ω

e−Nf(x) dx = − lim
N→∞

ln IN [f, 1]

N

= f(x?) + lim
N→∞

n logN

2N
− 1

N
ln

∫
Ω′

e
− 1

2 〈y,Hf (x?)y〉+O
(
N−

1
2 |y|3

)
dy


= f(x?) = min

x∈Ω
f(x).

Second, for ratios of such integrals one finds that

lim
N→∞

∫
Ω
g(x) e−Nf(x) dx∫

Ω
h(x) e−Nf(x) dx

= lim
N→∞

IN [f, g]

IN [f, h]

= lim
N→∞


∫

Ω′
g
(
x? + y√

N

)
e
− 1

2 〈y,Hf (x?)y〉+O
(
N−

1
2 |y|3

)
dy∫

Ω′
h
(
x? + y√

N

)
e
− 1

2 〈y,Hf (x?)y〉+O
(
N−

1
2 |y|3

)
dy


=
g(x)

h(x)

∣∣∣
x=x?=arg minx∈Ω f(x)

.

The situation becomes more complicated when we allow the dimension n of
our integration domain to depend on N . Provided the ratio n/N goes to zero
sufficiently fast as N →∞, one can still prove the above identities, but much more
care will be needed in dealing with correction terms.

If the function f(x) is complex, the correct procedure to be followed is to
deform the integration paths in the complex plane (using Cauchy’s theorem) such
that along the deformed path the imaginary part of the function f(x) is constant,
and preferably (if possible) zero. One then proceeds using Laplace’s argument and
finds the leading order in N of our integral in the usual manner by extremisation of
the real part of f(x). In combination, our integrals will thus again be dominated by
an extremum of the (complex) function f(x), but since f is complex this extremum
need not be a minimum, so that

− lim
N→∞

1

N
log

∫
Ω

e−Nf(x) dx = extrx∈Ω f(x)
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� The most known example of Laplace method application is an asymptotic
expression for Γ function, called Stirling’s approximation. We recall that

n! = Γ (n+ 1) =

∞∫
0

tn e−t d t.

Introducing new variable t = sn we obtain

Γ (n+ 1) = nn+1

∞∫
0

sn e−ns d s = nn+1

∞∫
0

e−nf(s) d s,

with f (s) = s− log s. Calculating derivatives gives f ′ (s) = 1−s−1 and f ′′ (s) =
s−2. One can easily check that f (0+) = f (+∞) = +∞ and the global minimum
is attained at s∗ = 1 with f (s∗) = 1 and f ′′ (s∗) = 1. Then using Laplace
theorem we obtain

Γ (n+ 1) ≈
√

2πnnn e−n .


 Example: The infinite-range Ising model Let us consider n spins σ = (σ1, . . . , σn)
system, σi = ±1, defined by its Hamiltonian

Hn (σ) = −h
n∑
j=1

σj −
J

2n

n∑
j,k=1

σjσj =: H(1)
n (σ) +H(2)

n (σ) .

Let us assume that the probability distribution on the set of configurations is given by
Boltzmann-Gibbs distribution, i.e.

P[σ = σ0] =
e−βHn(σ0)

ZN (β,H, J)
, ZN (β,H, J) =

∑
σ

e−βHn(σ) .

where ZN (β,H, J) is the partition function, introduced to normalise the distribution. In
this example we show how to calculate Z using the Hubbard-Stratonovich transformation.
We start with rewriting spin-spin interaction part of the Hamiltonian as follows

H(2)
n (σ) = − J

2n

n∑
j,k=1

σjσj = − J

2n

(
n∑
j=1

σj

)2

.

And applying HS transformation one gets

ZN (β,H, J) =
∑
σ

e−βH
(1)
n (σ)+ Jβ

2N (
∑N
j=1 σj)

2

=

√
n

2πβJ

∑
σ

eβH
(1)
n (σ)

∞∫
−∞

exp

{
− ny

2

2Jβ
+ y

(
N∑
j=1

σj

)}
d y

=

√
n

2πβJ

∞∫
−∞

e
−ny

2

2Jβ

∑
σ

exp

{
(y + βh)

(
N∑
j=1

σj

)}
d y.

Due to a factorization of summation terms we can easily calculate the sum,∑
σ

exp

{
(y + βh)

(
N∑
j=1

σj

)}
=

N∏
j=1

 ∑
σj=±1

exp {(y + βh)σj}

 =
N∏
j=1

2 cosh (y + βh) .
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Combining all the above one gets

ZN (β,H, J) =

√
n

2πβJ

∞∫
−∞

exp

{
− ny

2

2Jβ
+ n log (2 cosh (y + βh))

}
d y

=

√
n

2πβJ

∞∫
−∞

exp

{
−ng(y)

βJ

}
d y,

where

g(y) =
y2

2
− Jβ log (2 cosh (y + βh)) .

The last integral can be calculated approximately in the n � 1 regime by using Laplace
method and the answer can be written as

ZN (β,H, J) ≈ 1√
|g′′ (y0)|

e
− n
βJ
g(y0)

,

where y0 is a point of a global minimum of g(y).

4. Complex analysis

We have already given definitions involving complex numbers and used their
properties in the previous Section. Here we recap some fundamentals about them,
starting from the very definitions.

4.1. Arithmetic of complex numbers.

Definition 4.1. We define complex plane C as a field of numbers of the form
x + iy with x, y ∈ R and i being the imaginary unit satisfying i2 = −1. x ≡ <z is
called real part of z and y ≡ =z is the imaginary part of z.

A complex number z = x+iy can be associated with a point (x, y) ∈ R2, where
x, y are usual (Euclidean) coordinates. In the polar coordinates, every nonzero z ∈
C can be defined by a pair (r, θ) where r =

√
x2 + y2 and θ is defined as θ = arccos xr

up to integer multiples of 2π. The numbers r and θ are called, respectively, the
module and the argument of the complex number z, and are denoted by |z| and
arg z. A complex number is can be then represented as z = r eiθ. We stress again
that the argument is not uniquely defined: one can take θ + 2πk with any k ∈ Z.
We can choose k ∈ Z in such a way that −π < θ + 2πk ≤ π. This number θ + 2πk
is said to be the principal value of the argument and is denoted by Arg z.

Definition 4.2. For every z = x + iy = r eiθ ∈ C one can define complex
conjugate of z as z = x − iy or z = r e−iθ. Geometrically it corresponds to the
reflection over x axis in Euclidean coordinates.

Observe that
z · z = |z|2 ∈ R+.

Algebraic operations on complex numbers are defined as

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i (y1 + y2) ,

(x1 + iy1) · (x2 + iy2) = (x1x2 − y1y2) + i (x1y2 + x2y1) ,

(x+ iy)
−1

=
x− iy
x2 + y2

=
x+ iy

|x+ iy|2
.
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Proposition 4.1 (De Moivre’s formula). For any complex z = r eiθ ∈ C we
have

zn = rn einθ = rn (cos (nθ) + i sin (nθ)) .

Definition 4.3. The distance between two complex numbers z1, z2 is given by
dist (z1, z2) = |z1 − z2|.

The distance between two complex numbers is the same as the Euclidean dis-
tance between the corresponding Euclidean space representatives. The notion of
distance allows to introduce the standard definitions of open and closed sets, con-
vergence of sequences, continuity of functions, etc. Let us just underline that con-
vergence of the sequence zn → z0 is equivalent to two convergences xn = <zn →
x0 = <z0 and yn = =zn → y0 = =z0. Moreover we can define path in C as follows.

Definition 4.4. Let z1, z2 be two points in complex plane. A path from z1 to
z2 is a continuous map γ : [0, 1]→ C such that γ(0) = z1 and γ(1) = z2.

4.2. Functions of complex arguments. A complex function is any function
f : C → C. Any complex function can be considered as a map R2 → R2 and
decomposed as f (x, y) = u (x, y) + iv (x, y), where u = <f , v = =f and both
u, v : R2 → R are two real valued functions of two real variables. A complex
function f is continuous iff its real and imaginary parts are continuous functions.


 Example Complex exponent is defined by ez = ex+iy = ex (cos y + i sin y).


 Example To define complex logarithm one should solve equation ew = z. Let z = x+iy
and w = u+ iv. Then equating real and imaginary parts one has{

eu cos v = x,

eu sin v = y,

and one can conclude that {
u = log |z| ,
v = arg z.

However, arg z is a multi-valued function and so is a logarithm. One can get a single-valued
function by taking principal value

Log z := log |z|+ iArg z.

Let us now review some results about differentiability of complex functions.

Definition 4.5. A complex function f(z) is called differentiable at point z0 if
there exists a number ∂zf(z0) ∈ C such that

f (z0 + ∆z) = f(z0) + ∂zf(z0)∆z +O(|∆z|2), when ∆z → 0.

Taking real and imaginary parts of the last identity we obtain{
u (x0 + ∆x, y0 + ∆y)− u(x0, y0) = ∂xu∆x+ ∂yu∆y +O

(
(∆x)2 + (∆y)2

)
,

v (x0 + ∆x, y0 + ∆y)− v(x0, y0) = ∂xv∆x+ ∂yv∆y +O
(
(∆x)2 + (∆y)2

)
,

Comparing with

f(z0 + ∆z)− f(z) = ∂zf∆z = (∂xu+ i∂xv)∆x+ (−i∂yu+ ∂yv)i∆y +O(|∆z|2)
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that implies
∂xu = ∂yv − ∂yu = ∂xv.

The equations above are called Cauchy–Riemann equations and are necessary con-
dition for differentiability of f . Conversely, it can be shown that this condition is
also sufficient provided that the partial derivatives of u and v are continuous.

Theorem 4.2 (Cauchy–Riemann equations). Let f(z) = u (x, y) + iv (x, y) be
a complex function. Then f is differentiable at the point z0 = x0 + iy0 if real
functions of two variables u and v are differentiable and their partial derivatives
are continuous and satisfy Cauchy–Riemann equations

∂xu(x0, y0) = ∂yv(x0, y0), −∂yu(x0, y0) = ∂xv(x0, y0).

In this case ∂zf(z0) = ∂xu(x0, y0) + i∂xv(x0, y0).

Sometimes the Cauchy–Riemann equations are written as ∂z̄f(z0) = 0. This
suggests that f can not depend on z to be differentiable.


 Example Let us take f(z) = z2 =
(
x2 − y2

)
+ 2ixy. Then

∂xu = 2x ∂yv = 2x ∂yu = −2y ∂xv = 2y.

Cauchy–Riemann equations are satisfied and therefore

∂zf(z) = 2x+ i2y = 2z,

as one should expect.


 Example Let us take f(z) = ez = ex cos y + i ex sin y. Then

∂xu = ex cos y, ∂yv = ex cos y, ∂yu = − ex sin y, ∂xv = ex sin y.

Cauchy–Riemann equations are satisfied and therefore

∂zf(z) = ex cos y + i ex sin y = ez,

as one should expect.


 Example Let us take f(z) =
∣∣z2
∣∣ = x2 + y2. One should expect that f(z) is not

differentiable in C \ {0}, because ∂z̄f(z) = z. Cauchy–Riemann equations take the form

∂xu = 2x = ∂yv = 0, ∂yu = 2y = −∂xv = 0,

that gives x = y = 0. So |z|2 is differentiable only at the origin.

One can see, that differentiability is a local property and unlikely to the real
case does not yield any differentiability even in a close neighbourhood.

Definition 4.6. We say that D ⊂ C is a domain if D is open and connected.

Definition 4.7. We say that the function f is holomorphic in a neighbourhood
U of z0 if it is differentiable everywhere in U . We say that the function f is
holomorphic in a domain D if it is differentiable everywhere in D. We say that a
function is entire if it is holomorphic in the whole complex plane.

We denote the set of holomorphic function on D as H(D). It is important
to realise that being holomorphic, unlike differentiability, is not a property of a
function at a point, but on an open set of points. The reason for this is to able to
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eliminate from the class of interesting functions, functions which may be differen-
tiable at a point but nowhere else. Surprisingly, holomorphic functions have even
better smoothness than just differentiability. More precisely

Theorem 4.3. Let f(z) be holomorphic in domain D ⊆ C. Then ∂zf(z) is
continuous in D and f has all higher continuous derivatives in D.

The theorem says that f only needs to have a first derivative on D for this to
hold – remarkably, the continuity of that derivative and the existence and continuity
of all the higher derivatives, all then follow for free. Infinitely differentiable real
valued functions in a ball can be represented in Taylor series: the same holds for
complex functions.

4.2.1. Complex series. Let w0, w1, w2, . . . be a sequence of complex numbers.
As in the real case, we say that the (formal) infinite series

S =

∞∑
k=0

wk

converges if the sequence of its partial sums Sn =
∑n
k=0 wk converges to a limit

w ∈ C as m→∞. If this is the case, we write w =
∑∞
k=0 wk and call w the sum of

the series; we may indicate the series more briefly by
∑
k wk, and write

∑
k wk <∞

to indicate a convergent series and
∑
k wk =∞ to indicate a divergent series.


 Example
∑
k α

k is convergent if |α| < 1 and divergent if |α| > 1.

Proposition 4.4. For any complex power series
∑∞
n=0 an (z − z0)

n
there is

a value R ≥ 0 such that, if R 6= 0, then the series converges absolutely for those
z ∈ B (z0, R), and diverges for |z − z0| > R. If R = ∞ then the series converges
absolutely for all z ∈ C. If R = 0 then the series is divergent for all z 6= 0. The
radius of convergence is given by

R =

(
lim sup

k
|ak|

1
k

)−1

.

As in the real case, the lemma says nothing about the behaviour of the series
for |z − z0| = R. This depends on finer properties of the coefficients an; the series
may diverge or converge at those points.

Definition 4.8. f is said to be complex analytic in domain D if it is infinitely
times differentiable at every point of D and for each z0 ∈ D there is an open disc
B(z0, R) ⊂ D in which

f(z) =

∞∑
k=0

f (k)(z0)

k!
(z − z0)

k
.

Theorem 4.5. Let D be a domain in C and f holomorphic on it. Then f is
complex analytic in D.

Finally, let us mention a realtion, due to the Cauchy–Riemann equations, be-
tween harmonic functions and holomorphic functions.
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Definition 4.9. Let u : D ⊆ R2 → R be a twice differentiable function defined
on a domain D. It is called harmonic function if u solves the Laplace equation on
D

∆u (x, y) =
(
∂2
x + ∂2

y

)
u = 0, (x, y) ∈ D.

Theorem 4.6. Let f(z) be a holomorphic function in domain D ⊆ C. Then
its real and imaginary parts are harmonic functions in D.

Exercises

(1) Show that the alternating harmonic series
∑∞
n=1

(−1)n

n is convergent.
(2) Find the radius and a ball of convergence for the following power series

(a)
∑∞
k=0

k!2

(2k)!x
k.

(b)
∑∞
k=0

xk

sink k
.

(c)
∑∞
k=0

(2+(−1)k)
k

k (x− π)
k
.

(3) Find Taylor series expansion for the following functions and calculate cor-
responding radius of convergence
(a) f(x) = sinx around x = π

2 .
(b) ln (1 + x) around the origin.
(c) f(x) = arctanx around the origin. Hint: start with the Taylor series

for f ′(x).
(d) f(x) = 1−cos x

x2 around x = 0. Hint: write the series for cosx first.
(4) Prove Eq. (8) for n = 1, assuming A > 0 and b ∈ R. Hint:for the first

integral consider it squared and in corresponding double integral perform
change to polar coordinates. In the second integral complete the square
and make corresponding change of variables to get previous integral.

(5) Prove Eq. (9) for any real symmetric, positive matrix A ∈ Mn×nR and
arbitrary vector b ∈ Rn. Hint: Use spectral decomposition of matrix A,
change integration variables accordingly to reduce the problem to diagonal
matrix A. In the second integral perform linear change of variables to kill
a linear term and then use the first integral value.

(6) Let Γ (M,a) denotes upper incomplete Γ-function defined by

Γ (x, a) =

∞∫
a

e−t tx−1 d t.

Using Laplace method for asymptotic analysis of integrals depending on
a big parameter show that
(a) the following limit holds

lim
x→∞

Γ (x− 1, ax)

Γ (x− 1)
=

 1, 0 ≤ a < 1,
1
2 , a = 1
0, otherwise.

(b) for large x and a > 1 one has asymptotically

Γ (x− 1, ax)

Γ (x− 1)
≈ 1√

2πx

1

a (a− 1)
e−x(a−1−ln a) .

(7) Show that f (z) = zn is an entire function and prove its derivative is given
by f ′ (z) = nzn−1.



LECTURE 3

Calculus (continue)

1. Integration along a contour in complex plane

In this chapter we will consider the fundamental problem of integration along
a curve in the complex plane. In particular, we would like to make sense out of
something like ∫

γ

f(z) d z

where γ is a contour in C. We have given the definition of path above. Here it is
convenient to give few additional ones to specify the type of objects we will deal
with.

Definition 1.1. A path between z0 and z1 in the complex plane is said to be
simple if it does not cross itself (that is, γ (t1) 6= γ (t2) for t1 6= t2 ∈ (0, 1). If
γ(0) = γ(1) the path is s.t.b. closed. A path is said to be smooth (or continuously
differentiable) if the derivative γ̇(t) := ∂tγ(t) exists and is continuous, using the left
derivative at the point z0 and the right at z1.

Definition 1.2. A contour is a piecewise smooth path, i.e., a path γ : [0, 1]→ C

for which there exists a finite collection of numbers 0 = τ0 < τ1 < . . . < τn−1 <
τn = 1 such that γ : [τk, τk+1]→ C are smooth paths.

Proposition 1.1. The length of a contour γ is given by

l (γ) =

1∫
0

|γ̇(t)|d t.

Definition 1.3 (Contour integral). Let γ : [0, 1]→ C be a smooth path and f
be a continuous complex function on a neighbourhood of γ ([0, 1]). Then∫

γ

f(z) d z =

1∫
0

f (γ(t)) γ̇(t) d t.

If γ is a contour composed of smooth paths γk : [τk−1, τk] → C with k = 1, . . . , n
then ∫

γ

f(z) d z =

n∑
k=1

τk∫
τk−1

f (γ(t)) γ̇k(t) d t.

If the contour is closed we will write
∮
γ
f(z) d z to emphasize this fact.

29
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Proposition 1.2. If f is differentiable and its derivative f ′ is continuous along
the contour γ : [0, 1]→ C, then∫

γ

f ′(z) d z = f (γ(1))− f (γ(0)) .

Definition 1.4. Let f be a complex function defined on an open set D ⊂ C.
A function F defined on the same set D is said to be a primitive of f if F is
holomorphic in D and F ′(z) = f(z) for all z ∈ D.

Corollary 1.3. If f has a primitive F ∈ H(D), then∫
γ

f(z) d z = F (γ(1))− F (γ(0)) .

In particular, if γ is a closed contour then∮
γ

f(z) d z = 0.


 Example Let γr be the anticlockwise oriented circle about z0 of radius r. We want
to calculate

I(z) =
1

2πi

∮
γr

1

w − z dw,

for z lying in the open disc B (z0, r) bounded by γr. Let z = s eiθ, where s < r and
θ ∈ (−π, π]. We can parametrize contour as

γ(t) = r ei(2πt+θ), t ∈ (0, 1] .

Then by definition

I(z) =

1∫
0

r e2πit+iθ

s eiθ −r eiθ+2πit
d t =

1∫
0

1
s
r

e−2πit−1
d t = · · · = 1.

Theorem 1.4 (Cauchy’s integral formula). Assume that f ∈ H (B (z0, R)). Let
r < R and γr be the anticlockwise oriented circle around z0 of radius r. Then

f(z) =
1

2πi

∮
γr

f(w)

w − z
dw, ∀z ∈ B (z0, r) .

Theorem 1.5. Assume that f ∈ H (B (z0, R)). Let r < R and γr be the
anticlockwise oriented circle around z0 of radius r. Then

f(z) =

∞∑
k=0

ck (z − z0)
k
, ∀z ∈ B (z0, r) ,

where

ck =
1

2πi

∮
γr

f(w)

(w − z0)
k+1

dw,

and the series is absolutely and uniformly convergent in the disc B (z0, r).
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Corollary 1.6. With the assumptions of the theorem, the n-th derivative f (n)

satisfies

f (n)(z) =
n!

2πi

∮
γr

f(w)

(w − z)n+1 dw, ∀z ∈ B (z0, r) .

1.1. Isolated singularities and residues. Below we extend our class of
holomorphic functions to consider functions with ‘mild’ singularities.

Definition 1.5. We shall say that f(z) has an isolated singularity at the point

z = z0 if f is holomorphic in a punctured disc Ḃ (z0, r) := B (z0, r) \ {z0} for some
r > 0 but is not holomorphic at z0.


 Example f(z) = 1/z has an isolated singularity at 0.

Definition 1.6. Assume that f has an isolated singularity at z = z0. Then
there are three possibilities:

(1) the limit limz→z0 |f(z)| exists as a finite real number. In this case we say
that f has a removable singularity at z0;

(2) limz→z0 |f(z)| =∞. In this case we say that f has a pole at z0;
(3) the limit limz→z0 |f(z)| does not exist as a finite real number or ∞. In

this case we say that f has an essential singularity at z0.

Definition 1.7. Let f be a holomorphic function in the complement of a disc
about the origin. We shall say that f is bounded at infinity if f (1/z) has a removable
singularity at z = 0.


 Example The function f(z) = sin z
z

has a removable singularity at the origin.

The function f(z) = 1
z

has a pole at the origin.

The function f(z) = e−
1
z has an essential singularity at the origin.

Definition 1.8. A complex function on domain D is called meromorphic if it is
holomorphic in D except for a set of poles. Note that the pole set of a meromorphic
function is discrete (but may be infinite).

There is a simple yet useful generalisation of the notion of power series which
can handle the case of meromorphic functions, that are, in a sense, “almost holo-
morphic”. These series are known as Laurent series and consist of a sum of two
power series.

Definition 1.9. A Laurent series about the point z0 is a sum of two power
series one consisting of positive powers of z − z0 and the other of negative powers:

∞∑
k=0

ck (z − z0)
k

+

∞∑
k=1

c−k (z − z0)
−k

=:
∞∑

k=−∞

ck (z − z0)
k
.

A Laurent series is said to converge if each of the two power series converges.
The first series, being a power series in z− z0 converges inside some disc of conver-
gence B(z0, R) for some 0 ≤ R ≤ ∞. The second series, however, is a power series
in w = 1

z−z0 . Hence it will converge inside a circle of convergence |w| ≤ R0, that
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is, for |z − z0| > 1
R0

=: r. In other words, such a Laurent series will converge in an

annulus r < |z − z0| < R. For this to make sense, we need r < R: if this is not
the case, then the Laurent series does not converge anywhere. One can easily see
that if a Laurent series is convergent in an annulus, then it is holomorphic inside
of it. Therefore we can expect that any holomorphic in annulus function could be
decomposed in a Laurent series, that will converge to the function.

Theorem 1.7 (Laurent’s expansion). Let 0 ≤ r < R ≤ ∞ and D (z0; r,R) be
the open annulus r < |z − z0| < R. If f is holomorphic in D (z0; r,R) then there
exist a set of complex numbers {ck}∞k=−∞ such that

f(z) =

∞∑
k=−∞

ck (z − z0)
k
,

for all z ∈ D (z0; r,R), where the series is absolutely and uniformly convergent on
any annulus D (z0;R1, R2) with r < R1 < R2 < R. Moreover the coefficients of the
Laurent series are given by

ck =
1

2πi

∫
γ

f(ζ)

(ζ − z0)
k+1

d ζ,

where γ is any positively oriented loop lying in the annulus and containing z0 in its
interior.

y = =z

x = <z

z0
r

R

γ

If r = 0 then function f is holomorphic in B (z0, R) and can be rewritten as a
Taylor series. This is consistent with Laurent expansion as integrals of the form∫

Γ

f(ζ)

(ζ − z0)
k+1

d ζ,

vanish for k < 0 as integrals of holomorphic functions over a closed contour.


 Example Let us build Laurent expansion for f(z) = z2−2z+3
z−2

around z = 1 in the

region |z − 1| > 1. The direct way to proceed is by computing

ck =
1

2πi

∫
|ζ−1|=2

f(ζ)

(ζ − 1)k+1
d ζ.
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However, for algebraic functions it is more convenient to do a direct manipulation. Let us
introduce w = z − 1 with |w| > 1. Then

(10) f(z) =
w2 + 2

w − 1
=

(
w +

2

w

)
1

1− 1
w

=

(
w +

2

w

) ∞∑
k=0

w−k =

1∑
k=−∞

wk + 2

−1∑
k=−∞

wk

= w + 1 + 3

−1∑
k=−∞

wk = (z − 1) + 1 +

∞∑
k=0

3

(z − 1)k+1
.

Laurent expansion obviously depends on the centre of an annulus. In the next
example we would like to stress the fact, that by taking different annulus one also
gets different Laurent expansion for the same function and the same center.


 Example Let us build Laurent expansion for f(z) = 1
z2−3z+2

in three different regions

(1) Ω1 = {z : |z| < 1};
(2) Ω2 = {z : 1 < |z| < 2};
(3) Ω3 = {z : |z| > 2}.

We start by decomposing the function into partial fractions

f(z) =
1

z − 2
− 1

z − 1
.

In region Ω1 we have

f(z) = −1

2
· 1

1− z
2

+
1

1− z = −1

2

∞∑
k=0

(z
2

)k
+

∞∑
k=0

zk =

∞∑
k=0

(
1− 2−k−1

)
zk.

In region Ω2 we have

f(z) = −1

2
· 1

1− z
2

− 1

z
· 1

1− 1
z

= −1

2

∞∑
k=0

(z
2

)k
− 1

z

∞∑
k=0

z−k = −
∞∑
k=0

2−k−1zk −
∞∑
k=1

z−k.

Finally in region Ω3 we have

f(z) =
1

z
· 1

1− 2
z

− 1

z
· 1

1− 1
z

=
1

z

∞∑
k=0

(
2

z

)k
− 1

z

∞∑
k=0

z−k =

∞∑
k=1

(
2k−1 − 1

)
z−k.

Definition 1.10. If f(z) has an isolated singularity in z = z0 (i.e. it is
analytic for 0 < |z − z0| < ε for some small ε but not in z0), and the singularity
can be written as

f(z) =
c−m

(z − z0)
m + . . .+

c−1

(z − z0)
+ φ(z) 0 < |z − z0| < ε,

with φ(z) analytic at |z − z0| < ε, then we say that f(z) has a pole of order m at
z = z0 (if m = 1, for example, it is called a simple pole). We define the residue of
f at z = z0 as

Res (f, z0) = c−1.

In some case it is simple to compute the residue in a point
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(1) Assume that f(z) has a simple pole at z = z0, i.e., f(z) = c−1 (z − z0)
−1

+∑∞
k=0 ck (z − z0)

k
. Then

Res (f, z0) = lim
z→z0

(z − z0) f(z).

(2) If f(z) has a pole of order m at z = z0, then g(z) := (z − z0)mf(z) =∑∞
k=0 ck−m (z − z0)

k
, from which we have to extract the coefficient of

(z − z0)
m−1

. But this is given by

Res (f, z0) = c−1 =
g(m−1)(z0)

(m− 1)!
=

1

(m− 1)!
lim
z→z0

∂m−1
z [(z − z0)

m
f(z)] .

(3) Finally, if

f(z) =
φ(z)

h(z)
with φ(z), h(z) analytic at z = z0

and h(z0) = 0 but h′(z0) 6= 0, then f has a simple pole at z = z0 and

Res (f, z0) = lim
z→z0

(z − z0)
φ(z)

h(z)
=

φ(z0)

h′(z0)
.


 Example Let us find all isolated singularities of f(z) = cot z2 = cos z2

sin z2 and cor-

responding residues. The function f has singularities only at points where sin z2 = 0,
i.e., for z = ±

√
πk and z = ±i

√
πk for k ∈ N. At every such a point, except z = 0,

∂z
(
sin z2

)
= 2z cos z2 6= 0, and therefore we can apply the last result and compute

Res
(
f,±
√
πk
)

=
cosπk

±2
√
πk cosπk

= ± 1

2
√
πk
,

Res
(
f,±i

√
πk
)

=
cos (−πk)

±2i
√
−πk cos (−πk)

= ± 1

2i
√
πk
.

For z = 0 we have sin z2 = 0 and ∂z
(
sin z2

)
|z=0 = 0 while ∂2

z

(
sin z2

)
|z=0 = 2 6= 0. As a

consequence

Res (f, 0) = lim
z→0

∂z

[
z2 cos z2

sin z2

]
= lim
z→0

sin z2
(
2z cos z2 − 2z3 sin z2

)
− 2z3 cos2 z2

sin2 z2
= 0.

The crucial importance of residues is motivated by the following theorem.

Theorem 1.8 (Cauchy Residue theorem). Let γ be a closed simple contour in
C and f : C→ C analytic along γ and its interior except possibly at a finite number
of points z1, . . . , zm, at which points f(z) has isolated singularities. Then, with γ
being oriented in an anti-clockwise sense∮

γ

f(z) d z = 2πi

m∑
k=1

Res (f, zk) .

Definition 1.11 (Residue at infinity). Let f : C→ C be an analytic function
in C except possibly at a finite number of points z1, . . . , zm at which points f(z) has
isolated singularities. Given a simple closed contour γ oriented in an anti-clockwise
sense containing all singularities in its interior, we define the residue at infinity by

Res (f,∞) = − 1

2πi

∮
γ

f(z) d z.
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Proposition 1.9. The residue Res (f,∞) can be calculated as a residue of
g(z) = − 1

z2 f (1/z) at zero.

Cauchy’s theorem can be reformulated as follows.

Proposition 1.10. The sum of all residues for any function f with finitely
many isolated singularities in {zi}mi=1 is equal to 0, i.e.

m∑
k=1

Res (f, zk) + Res (f,∞) = 0.


 Example Let us compute an integral

I =

∮
γ

z2 + 3z + 2

(z4 − 1) (z − 1)2 d z,

where γ is a circle with centre at the origin of radius 2. To calculate the integral first
we would like to find all the singularities of the integrand. These are all zeros of the
denominator, i.e. z = ±1,±i and they all lie inside of the contour. At z = −1 we have
removable singularity, and we don’t consider it. At z = ±i we have first order poles with
residues

Res (f, i) = lim
z→i

(z − i) f(z) = lim
z→i

z2 + 3z + 2

(z + i) (z2 − 1) (z − 1)2 = −1

8
− 3

8
i,

Res (f,−i) = lim
z→−i

(z + i) f(z) = lim
z→−i

z2 + 3z + 2

(z − i) (z2 − 1) (z − 1)2 = −1

8
+

3

8
i.

At z = 1 there is a pole of the third order and

Res (f, 1) = lim
z→1

∂2
z (z − 2)3 f(z) = lim

z→1
∂2
z
z + 2

(z2 + 1)
= . . . =

1

2
.

Combining all the above we obtain

I =
πi

4
.


 Example Let us calculate an integral

I =

∮
γ

z e
1/z d z,

where γ is the unit circle centered in the origin. There is exactly one isolated singular-
ity inside of a unit circle. However, it is an essential singularity and we want to omit
calculation of a residue at it. This can be done by using residue at infinity:

I = −2πiRes (f,∞) .

The residue can be calculated as a residue at the origin for

g(z) = − 1

z2
f

(
1

z

)
= − 1

z3
ez = − 1

z3
− 1

z2
− 1

2!z
− . . . ,

where for the last identity we used Taylor series expansion for ez. Therefore,

Res (g, 0) = −1

2
,

and
I = πi.
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1.2. Applications of Cauchy Residue theorem. There are many appli-
cations of the residue theorem to evaluate real integrals and to summing infinite
series. The first application of such a kind we would like to discuss is a calculation
of trigonometric integrals of the form

2π∫
0

Q (cos θ, sin θ) d θ,

where Q (•, •) is a rational function. In this case we introduce z = eiθ and change

cos θ = z+z−1

2 , sin θ = z−z−1

2i and d θ = d z
iz to obtain a rational function integral

along the unit circle.


 Example Let us calculate

I =

2π∫
0

sin2 θ

5 + 4 cos θ
d θ.

After performing change of variables we obtain

I = − 1

4i

∮
γ

z4 − 2z2 + 1

z2 (2z2 + 5z + 2)
d z = −π

2

∑
i

Res

(
z4 − 2z2 + 1

z2 (2z2 + 5z + 2)
, zi

)
,

where ai are isolated singularities of the integrand inside of the unit circle. One can rewrite
f(z) as

f(z) =
z4 − 2z2 + 1

2z2 (z + 2)
(
z + 1

2

) ,
to see that it has poles at z = 0 and z = − 1

2
of orders 2 and 1 respectively.

Res

(
f(z),−1

2

)
= lim
z→− 1

2

z4 − 2z2 + 1

2z2 (z + 2)
=

3

4
.

Res (f(z), 0) = lim
z→0

∂z
z4 − 2z2 + 1

2z2 + 5z + 2
= −5

4
.

Therefore,

I =
π

4
.

Another class of integrals that can be computed via using Cauchy’s theorem
is class of rational integrals in real variable over infinite interval. Let P (z) be an
entire function, and Q(z) be a polynomial with no real roots. We are interested in
evaluation of the integral

I =

∞∫
−∞

P (x)

Q(x)
dx assuming

|zP (z)|
|Q(z)|

→ 0, when |z| → ∞, z ∈ C+.

In the expression above, C+ is the upper half complex plane, =z > 0. By the
definition

I = lim
R→∞

IR, IR :=

R∫
−R

P (x)

Q(x)
dx,

and we would like to consider IR as a contour integral with contour γR given by
the interval (−R,R) parametrized with γiR(t) = t, for t ∈ (−R,R). Such a contour
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is not closed, and therefore the residue theorem is not applicable. However, if one
considers contour γR = γiR ∪ γcR with γcR =

{
R eit : t ∈ [0, π]

}
:

<z

=z

γiR

γcR

R−R

z1

z2

z3

z4

Then

IR =

∮
γR

P (z)

Q(z)
d z −

∫
γcR

P (z)

Q(z)
d z.

If R is big enough, then all the singularities (i.e., zeros of Q(z)) with positive
imaginary part z1, z2, . . . , zn are trapped inside of γR, and therefore the first integral
can be calculated by using the residue theorem. For the second one∣∣∣∣∣∣∣

∫
γcR

P (z)

Q(z)
d z

∣∣∣∣∣∣∣ ≤ 2πRmax
z∈γcR

∣∣∣∣P (z)

Q(z)

∣∣∣∣→ 0, whenR→∞.

Therefore we obtain

I = lim
R→∞

R∫
−R

P (x)

Q(x)
dx = 2πi

∑
zj

Res

(
P (z)

Q(z)
, zj

)
,

where the sum is taken over all zeros of Q(z) in the upper half plane. In some of
the cases it is more convenient to close the contour through the bottom half plane
C−. In this case we need to calculate the residues at the poles lying in C−.


 Example Let us compute

I =

∞∫
−∞

x2

(x2 + 1)2 dx.

It is obvious that ∣∣z3
∣∣∣∣(z2 + 1)2
∣∣ ∼ 1

|z| → 0, when |z| → ∞, z ∈ C+.

Therefore,

I = 2πiRes

(
z2

(z2 + 1)2 , i

)
,

as there is only one singularity of the integrand in an upper half plane. This pole is of the
second order and

Res

(
z2

(z2 + 1)2 , i

)
= lim
z→i

∂z
z2

(z + i)2 = − i
4
.

And the integral is equal to

I =
π

2
.
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2. Integral transformations

2.1. Fourier series. We have seen earlier that any smooth function can be
represented as its Taylor series expansion. If the function f is periodic, however,
the power series expansion might look less convenient, because the elements of the
series do not preserve this property. For periodic functions it is more natural to
decompose it into finite or infinite sum of simple periodic functions performing a
Fourier series expansion.

Definition 2.1 (Fourier series). Let us consider a function f(x) ∈ L1 [−π, π]∩
L2 [−π, π], i.e., such that

∫ π
−π |f(x)|dx < +∞ and

∫ π
−π |f(x)|2 dx < +∞. Then its

Fourier series is defined by

Sf (x) =
a0

2
+

∞∑
k=1

(ak cos (kx) + bk sin (kx)) ,

where {
ak = 1

π

∫ π
−π f(x) cos (kx) dx,

bk = 1
π

∫ π
−π f(x) sin (kx) dx.

It is easy to check that if f(x) is a trigonometric polynomial, then its Fourier
series is given by itself. Alternatively one can use complex exponents eikx, k =
0,±1,±2, . . . as a basis. Then Fourier series for a function f is given by

Sf (x) =

∞∑
k=−∞

ck eikx,

where

ck =
1

2π

π∫
−π

f(x) e−ikx dx.

Fourier series is a way to represent a function as the sum of simple waves. More
formally, it decomposes any periodic function or periodic signal into the sum of a
(possibly infinite) set of simple oscillating functions, namely sines and cosines (or,
equivalently, complex exponentials). Under some additional conditions on smooth-
ness of f it can be shown that its Fourier series converges point-wise, in L2 [−π, π]
norm, uniformly to f(x). One of important properties of Fourier series that it has
the same norm as initial function. More precisely

Theorem 2.1 (Parseval’s identity). Let us consider f(x) ∈ L1 [−π, π]∩L2 [−π, π]
with Fourier series

Sf (x) =
a0

2
+

∞∑
k=1

(ak cos (kx) + bk sin (kx)) .

Then

1

π

π∫
−π

|f(x)|2 dx =
a2

0

2
+

∞∑
k=1

(
a2
k + b2k

)
.
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 Example Let us build Fourier series for

f(x) = |x| , x ∈ [−π, π] .

All coefficients bk vanish because of the symmetry

bk =
1

π

π∫
−π

|x| sin (kx) dx = 0.

For cosine terms we have

ak =
1

π

π∫
−π

|x| cos (kx) dx =
2

π

π∫
0

x cos (kx) dx =

{
π, k = 0

2
k2π

(
(−1)k − 1

)
, k > 0.

And corresponding Fourier series takes the form

Sf (x) =
π

2
− 1

π

∞∑
k=1

4

(2k + 1)2 cos (2k + 1)x.

Parseval’s identity gives

2π3

3
= π

(
π2

2
+

16

π2

∞∑
k=1

1

(2k + 1)4

)
⇒

∞∑
k=1

1

(2k + 1)4 =
π4

96
.

2.2. Discrete Fourier transform. Let us now introduce the discrete Fourier
transform.

Definition 2.2. The discrete Fourier transform maps a sequence of N complex
numbers x0, x1, . . . , xN−1 into another sequence of complex numbers, t0, t1, . . . , tN−1

which is defined by

tn =

N−1∑
k=0

xk e−2πik nN ,

Theorem 2.2 (Properties of discrete Fourier transform). The discrete Fourier
transform is an invertible, linear transformation Fd : CN → CN with CN denoting
the set of N -tuples of complex numbers. The inverse is given by

xn =
1

N

N−1∑
k=0

tk e2πik nN .

Parseval’s identity takes the form

N−1∑
n=0

|xn|2 =
1

N

N−1∑
n=0

|tn|2 .

2.3. Fourier transform. Continuous analogue of the Fourier series and the
discrete Fourier transform is Fourier transform.

Definition 2.3 (Fourier transform). Let f ∈ L1(R) be an absolutely integrable

function on R. Then its Fourier transform f̂(t) is defined by

f̂(t) ≡ F [f ](t) :=

∞∫
−∞

eixt f(x) dx.
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The condition f ∈ L1(R) yields that f(x) must be defined from −∞ to ∞
and in particular it is necessary that f(x) → 0 for x → ±∞. Observe that in the

following we will denote, for the sake of brevity, f̂(t) as the Fourier transform of f .

Theorem 2.3 (Parseval’s identity). Let f ∈ L1(R) ∩ L2(R) be an absolutely

integrable with its square function on R. Then f̂(t) ∈ L2(R) and

2π

∞∫
−∞

|f(x)|2 dx =

∞∫
−∞

|f̂(t)|2 d t.

Theorem 2.4. The Fourier transform is a linear map F : L1(R) → L∞(R).

For functions f ∈ L1(R) with f̂ ∈ L1(R) one can define inverse Fourier transform
by

F−1[f̂ ](x) :=
1

2π

∞∫
−∞

e−ixt f̂(t) d t.

If additionally f is continuous, then

f(x) = F−1[f̂ ](x), ∀x ∈ R.

Theorem 2.5 (Properties of Fourier transform). Let f, g be smooth, absolutely
integrable with all their derivatives functions defined on R. Then

(1) F [f (x− x0)] (t) = eitx0 f̂(t).

(2) F [f (ax)] (t) = 1
a f̂ (t/a).

(3) F
[
f (n)

]
(t) = (−it)n f̂(t).

(4) F [f ∗ g] (t) = f̂(t)ĝ(t), where f ∗ g is a convolution defined by

(f ∗ g) (x) =

∞∫
−∞

f (x− y) g(y) d y.

(5) F [1] (t) = 2πδ(t), F−1 [δ] (t) = 1
2π , where δ is the Dirac delta function.

� Link to white noise A white noise X(t) is defined as a stochastic function of
time with the properties:

〈X〉 = 0 〈X(t)X(t′)〉 = Cδ(t− t′)
i.e. the correlation in time is given by a δ-function (i.e. the values of X(t) are un-
correlated for t 6= t′). The FT of this correlation function, called power spectrum
(i.e. the correlation in the space of frequencies) is a constant by Theorem 2.5,
which implies that all the frequencies contribute to it with the same weight (as
it happens for white light).


 Example For a ∈ R, let

fa(x) ≡ θ(x− a) =

{
0, x ≤ a
1, x > a.
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Let us compute fa ∗ fb for a, b ∈ R. Using the definition

(fa ∗ fb) (x) =

∞∫
−∞

fa (x− y) fb(y) d y =

{∫ x−a
b

d y = x− a− b x > b+ a

0, x < b+ a.

Therefore,
(fa ∗ fb) (x) = (x− a− b) fa+b(x).


 Example For a ∈ R+, let

ga(x) =

{
0, x ≤ 0

e−ax, x > 0.

Let us compute ga ∗ gb for a, b ∈ R. Using the definition

(ga ∗ gb) (x) =

∞∫
−∞

ga (x− y) gb(y) d y =

∞∫
0

e−a(x−y) I(x− y > 0) e−by d y

= =


e−bx − e−ax

a−b x > 0, a 6= b

x e−ax x > 0, a = b

0, x ≤ 0.

Fourier transform of ga is given by

F [ga] (t) =

∞∫
−∞

eixt−ax θ(x) dx =

∞∫
0

e−(a−it)x dx =
1

a− it .

Using properties of Fourier transform we obtain

F [ga ∗ gb] (t) =
1

a− it
1

b− it =
1

b− a

(
1

a− it −
1

b− it

)
=

1

b− a (F [ga] (t)−F [gb] (t)) = F
[
ga − gb
b− a

]
(t), a 6= b.

2.3.1. Calculation of Fourier transforms. The residue theorem can be used to
evaluate also integrals of the from

f̂(t) =

∞∫
−∞

eixt f(x) dx.

We start with the definition

∞∫
−∞

eitx f(x) dx = lim
R→∞

R∫
−R

eitx f(x) dx.

Then we consider a complex integral along the contour γR as in the figure in Sec-
tion 1.2 in such a way that∮

γR

eitz f(z) d z =

R∫
−R

eitx f(x) dx+

∫
γcR

eitz f(z) d z = 2πi
∑
aj

Res
(
eitz f, aj

)
,
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where aj are the singularities of f(z) in the upper half plane. We can evaluate this
integral by residue theorem, as shown by the last equality. For the semicircular
part we can use

Lemma 2.6 (Jordan’s lemma). Consider a complex-valued, continuous function
h, defined on a semicircular contour γcR =

{
R eit : t ∈ [0, π]

}
of positive radius R

lying in the upper half-plane, centred at the origin. If the function h is of the form

h(z) = eiaz g(z), z ∈ γcR,

with a positive parameter a, then∣∣∣∣∣∣∣
∫
γcR

h(z) d z

∣∣∣∣∣∣∣ ≤
π

a
max
t∈[0,π]

∣∣g (R eiθ
)∣∣ .

An analogous statement for a semicircular contour in the lower half-plane holds
when a < 0.

If function f(z) decays fast in upper half plane, then in the limit of R→∞ we
can use the lemma to show

lim
R→∞

∫
γcR

eitz f(z) = 0, t > 0.

provided that lim|z|→∞ f(z) = 0. As a consequence, the integral along γcR vanishes

and the residue formula actually allows one to evaluate
∫∞
−∞ eitx f(x) dx.


 Example [From the exam CS04, Problem 3.5 with γ = 0] Consider a forced one-
dimensional harmonic oscillator with mass m, natural frequency ω0

ẍ(t) + ω2
0x(t) =

f(t)

m
.

Assume the displacement x(t) from the equilibrium position x(t) ≡ 0 in presence of the
force f(t) is given by convolution of the force and response function, i.e.

x(t) = (R ∗ f) (t) =

∞∫
−∞

R (t− s) f(s) d s,

where R(t) is the response function. Define the dynamical susceptibility χ(ω) as the
Fourier transform of the response function

χ(ω) = F [R] (ω) =

∞∫
−∞

R(t) eiωt d t.

Then, using properties of the Fourier transform, we can get

F [x] (ω) = F [R] (ω)F [f ](ω) = χ(ω)f̂(ω).

For the second derivative we have

F [ẍ] (ω) = −ω2F [x] (ω) = −ω2χ(ω)f̂(ω).

taking Fourier transform of initial equation we obtain(
ω2

0 − ω2)χ(ω)f̂(ω) =
1

m
f̂(ω),
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and we obtain

χ(ω) =
1

m (ω2
0 − ω2)

.


 Example [From exam CS04, Problem 3.5 with γ > 0] Consider a forced one-
dimensional harmonic oscillator with mass m, natural frequency ω0 and damping constant
γ > 0.

ẍ(t) +
γ

m
ẋ(t) + ω2

0x(t) =
f(t)

m
.

In the same notation of the previous example, and repeating above calculation one can
get

χ(ω) =
1

m (ω2
0 − ω2 − iγω)

.

We now want to calculate the response function by using the inverse Fourier transform,

(11) R(t) =
1

2π

∞∫
−∞

e−iωt χ(ω) dω.

The function χ(ω) has two poles at

ω± =
−iγ ±

√
4ω2

0 − γ2

2
.

If ω0 >
γ
2

, then =ω± = −γ
2
,<ω± = ±

√
ω2

0 −
γ2

4
and ω± are complex numbers lying in the

bottom half plane. If ω0 <
γ
2

, then <ω± = 0,=ω± = − γ
2
±
√

γ2

4
− ω2

0 and ω± are pure

imaginary numbers lying in the bottom half plane.

<z

=z

ω0 >
γ
2

ω+ω−

<z

=z

ω0 <
γ
2

ω−

ω+

For t > 0 we close the contour as in the pictures above. The integral along the semicircle
goes to 0, as χ(ω) ∼ ω−2, when ω →∞. By the residue theorem

R(t) = i (Resω1 + Resω2) e−iωt χ(ω) = − i

m

(
e−iω1t

ω2 − ω1
+

e−iω2t

ω1 − ω2

)

=
i

m

e−iω1t− e−iω2t

ω1 − ω2
= e−γt/2

sin
(
t
√
ω2

0 − γ2/4
)

m
√
ω2

0 − γ2/4
.

For t < 0 we close the contour through the upper half plane, where no poles are present
and therefore R(t) = 0. Finally,

R(t) = e−γt/2
sin
(
t
√
ω2

0 − γ2/4
)

m
√
ω2

0 − γ2/4
θ(t).
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 Example [From CS04, Exercise 3.3] Question: Equilibrium correlations normally decay

with a characteristic decay time τC , as C (τ) = e
− τ
τC . Show that the power spectrum (i.e.

the Fourier transform of the correlation function) is

S(ω) =
2τC

ω2τ2
C + 1

.

Solution: Instead of calculating Fourier transform of correlation function

F [C] (ω) =

∞∫
−∞

e
iωτ− τ

τC d τ,

we will show that inverse Fourier transform of S(ω), given by

F−1 [S] (τ) =
τC
π

∞∫
−∞

e−iωτ

ω2τ2
C + 1

dω

is equal to C (τ). For the last integral we use Jordan’s lemma 2.6 to change the contour
to the bottom semicircular for τ > 0 and upper for τ < 0. Then the integral can be
calculated by the residue theorem:F

−1 [S] (τ) = −2iτCRes
(

e−izτ

z2τ2
C

+1
,− i

τC

)
= −2iτC

1
−2iτC

e
− τ
τC = C (τ) , τ > 0;

F−1 [S] (τ) = 2iτCRes
(

e−izτ

z2τ2
C

+1
, i
τC

)
= 2iτC

1
2iτC

e
− τ
τC = C (τ) , τ < 0.

where in the first case we put minus sign in front of the residues because the contour is
clockwise oriented. For τ = 0 one can check identity directly

F−1 [S] (0) =
τC
π

∞∫
−∞

1

ω2τ2
C + 1

dω = 1.

2.3.2. Multidimensional Fourier transform. One can also define Fourier trans-
form for multivariate functions.

Definition 2.4 (Fourier transform). Let f ∈ L1(Rd) be an absolutely integrable
function on Rd, i.e.,

∫
Rd
|f(x)|dx <∞. Then its Fourier transform is defined by

F [f ](t) =

∫
Rd

ei〈t,x〉 f(x) dx.

Theorem 2.7 (Parseval’s identity). Let f ∈ L1(Rd)∩L2(Rd) be an absolutely
integrable with its square function on Rd. Then F [f ] ∈ L2(Rd) and

(2π)
d
∫
Rd

|f(x)|2 dx =

∫
Rd

|F [f ](t)|2 d t.

Theorem 2.8. The Fourier transform is a linear map F : L1(Rd)→ L∞(Rd).

For functions f ∈ L1(Rd) with absolutely integrable Fourier transform f̂ := F [f ] ∈
L1(Rd) one can define inverse Fourier transform by

F−1[f̂ ](x) =
1

(2π)
d

∫
Rd

e−i〈t,x〉 f̂(t) d t.

If additionally f is continuous, then

f(x) = F−1[f̂ ](x), ∀x ∈ R.
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 Example Let f (x, y) = exp
{
−x2/2 + λxy − y2/2

}
for |λ| < 1. The corresponding

Fourier transform is given by

F [f ](t) =

∫
R2

e−
1
2
〈x,Ax〉+i〈t,x〉 dx =

2π√
detA

e−〈t,A
−1t〉,

where A =
(

1 −λ
−λ 1

)
and we used the value of Gaussian integral obtained before. One can

easily find A−1 = 1
1−λ2 ( 1 λ

λ 1 ) and therefore

F [f ](t) =
2π

1− λ2
e
−

t21
1−λ2−2

λt1t2
1−λ2 −

t22
1−λ2 .

2.4. Laplace transform. The Laplace transform is an integral transform de-
fined as

Definition 2.5. Let f : R+ → C be a complex valued function defined on a
positive semiaxis. Its Laplace transform is a function defined in complex plane by

L[f ](s) =

∞∫
0

e−sx f(x) dx.

In probability theory Laplace transform of a probability distribution for real
positive random variable is its moment generating function. The following theorem
holds.

Theorem 2.9. Let f ∈ L∞(R) be an absolutely integrable complex valued func-
tion on R+. Then its Laplace transform F (s) is an analytic function in the region of
its convergence and inverse Laplace transform is given by Mellin’s inverse formula:

L−1 [F ] (x) =
1

2πi

γ+i∞∫
γ−i∞

est F (s) d s,

where γ is a real number so that the contour path of integration is in the region of
convergence of F (s).

Theorem 2.10. Let f ∈ L∞(R) be absolutely integrable with all its derivatives
on R and let F (s) be its Laplace transform. We introduce

I[f ](t) =

t∫
0

f(s) d s,

being anti-derivative of f(s). Then

(1) L [f (ax)] (s) = 1
aF
(
s
a

)
.

(2) L [f ′(x)] (s) = sF (s)− f(0).
(3) L [f ′′(x)] (s) = s2F (s)− sf(0)− f ′(0).

(4) L
[
f (n)(x)

]
(s) = snF (s)−

∑n−1
j=0 s

jf (n−j−1)(0).

(5) L [I[f ](x)] (s) = F (s)
s .

(6) L [δ (x− x0)] (s) = e−sx0

{
1 if x0 > 0,

0 if x0 ≤ 0.
.



46 3. CALCULUS (CONTINUE)


 Example [Magnetization distribution for non-interacting spins] Consider N spins
variables σi ∈ {−1, 1}, with i = 1, . . . , N and define the total magnetization M =

∑
i σi.

In the absence of external magnetic field (h = 0) and spin-spin interactions, σi’s are i.i.d.
variables with distribution

p (σ) =
1

2
δσ,1 +

1

2
δσ,−1.

Then, the number of configurations compatible with some magnetisation M is given by
the partition function

Z(M) =
∑
σ

N∏
i=1

p (σi) δ

(
M −

∑
i

σi

)
,

To calculate the partition function the easiest way is to compute its Laplace transform,
given the factorising property of the Laplace transform

Ẑ(α) =

∞∫
0

e−αM Z (M) dM =
∑
σ

N∏
i=1

p (σi)

∞∫
0

e−αM δ

(
M −

∑
i

σi

)
dM

=
∑
σ

N∏
i=1

p (σi) e−ασi = (coshα)N .

Z (M) can then be found by using the inversion formula

Z (M) =

c+i∞∫
c−i∞

eαM Ẑ (α) dα =

c+i∞∫
c−i∞

eαM+N log coshα dα,

where c must be chosen to the right of any singularity. For large N , one can evaluate the
integral using the saddle-point (or Laplace) method, which consists in approximating the
integral with its largest integrand, found by locating the maximum of the exponent. We
obtain, with m = M/N ,

Z (M) ∼ eNs(m),

where

s (m) = sup
α

[αm+ log coshα]

= −m atanhm+ ln 2 cosh(atanhm)

= −1 +m

2
ln

(
1 +m

2

)
− 1−m

2
ln

(
1−m

2

)
,

which is the constrained entropy, or log-density of states exhibiting magnetization m. The
interpretation is clear: to achieve the total magnetization m, each spin will have to take
values ±1 with probabilities (1 ±m)/2. Hence s(m) is the Shannon entropy of a system
with these probabilities.

2.4.1. Tail behaviour extraction from Laplace transform. Suppose that f(t) has
some tail for large t that is expressed by a power law, i.e.

f(t) ∼ t−µ t� 1,

with µ < 1, in such a way that
∫∞

0
t−µdt diverges. L[f ](s) depends on the whole

f(t) but one can extract some information on its small s asymptotics from the tail
behavior of f . Indeed, for small s,

L[f ](s) ∼
∞∫

0

t−µ e−st d t = sµ−1Γ(1− µ) µ < 1,
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where we have set x = st and we have introduced the Γ function

Γ(n) =

∞∫
0

xn−1 e−x dx.

Therefore, if a priori we know that f(t) has a power law decay at infinity, then we
can find exact asymptotics of it just by analysing its Laplace transform asymptotics
around zero.

Exercises

(1) Show that f(z) = zn is an entire function and prove its derivative is given
by f ′(z) = nzn−1.

(2) Calculate the integral∫
γ

sin 1
z

z2 (z2 − 4z + 5)
d z,

where γ is
(a) Circle of radius 1 around the origin.
(b) Circle of radius 3/2 around z = 2.

(3) Calculate the integral
∞∫
−∞

sinx

x
dx,

via considering corresponding complex integral and closing the contour.
(4) Compute the Fourier transform for f(x) = 1/x.
(5) Calculate Fourier transform F [f ](t) for

(a) f(x) =

{
cos 3x, x ∈ [−π, π] ,

0, otherwise.

(b) f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 .

(c) f(x) =


x+ 1, x ∈ [−1, 0] ,

1− x, x ∈ (0, 1] ,

0, otherwise.

(d) f(x) =

{
0, x ∈ (−∞, 0] ,

e−t, t ∈ [0,∞) .

(e) f(x) =
(
x2 − 1

)
e−

x2

2 .
(6) Calculate the partition function of the system described by Hamiltonian

H(σ) = − J

2N

∑
ij

σiσj ,

via using Fourier representation of delta function.





LECTURE 4

Probability

1. Random variables

We start with formal definition of probability space and probability distribution

Definition 1.1. Let Ω be a set, called sample space and let F be a σ-algebra
of subsets of Ω, called event space, i.e., an algebra of subset of Ω satisfying the
following

(1) ∅,Ω ∈ F ;
(2) if A ∈ F , then Ac ∈ F , i.e. F is closed under taking complement;
(3) if Ai ∈ F for any i = 1, 2, . . . then

⋃
iAi ∈ F , i.e. F is closed under

union.

Let P : F → R be a function on F , called probability distribution. We then say that
triple (Ω,F ,P) forms a probability space if the following holds

(1) P(∅) = 0 and P(Ω) = 1;
(2) P is non-negative function;
(3) for any disjoint A,B ∈ F , P[A ∪B] = P[A] + P[B].

Definition 1.2. Let (Ω,F ,P) be a probability space. We call random variable.
X : Ω→ R any measurable function with respect to F .

To give an example of this formal definition, suppose that we perform an ex-
periment and, every time we repeat it, this has an outcome ω. The outcome can be
described by random variable X(ω), related for example to some measurable ob-
servable. Its value cannot be specified a priori but we can assign to it a probability
P[ω] for its occurrence. Each possible outcome ω is a “sample” in the language of
probability theory and it belongs to the sample space Ω, i.e., the set of all possible
outcomes. An event is a set of outcomes. The σ-algebra F is just the family of
potentially observable events and it is sometimes called event space.

For example, the space Ω of all outcomes of a dice rolling is

The event even number corresponds to a subset of tree outcomes.
In the definition above, the function P is just given. A possible interpretation

of it is the following. If we repeat the experiment N times and n(ω) is the number

of times a certain outcome ω appears, n(ω)
N is the frequency of ω. The probability

P[ω] can be interpreted as the limit of the frequency for increasing N , i.e.

P[ω] := lim
N→∞

n(ω)

N
.

Now we are going to discuss three fundamentally different cases of Ω:

49
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(1) Let Ω contains just one element. This means that there is only one possible
outcome ω of the experiment. As a result, any random variable takes only
one possible value X(ω) with probability P[ω] = P[Ω] = 1. This random
variable is then deterministic.

(2) If Ω = {ωi}i is a countable set, then F is a collection of all possible subsets
of Ω, i.e. F = 2|Ω|, which is possibly infinite. Random variables in this
case are said to be discrete random variables and can take only countably
many values. With any outcome we can assign corresponding probability
P[ωi] ≡ pi. As a simple consequence of the definition we can get∑

ω∈Ω

P[ω] = 1.

(3) Finally, if Ω contains uncountably infinite number of possible outcomes
we say that we have continuous probability space. Corresponding ran-
dom variables are called continuous, and in this case there is no sense (in
general) to talk about the probability P[ω]. Instead of this we discuss
probability that an outcome falls into some set A ∈ F . The normalisation
condition in this case is written as∫

Ω

P[dω] = 1.

1.1. Probability distributions, moments and cumulants.

Definition 1.3. The cumulative distribution function of a real-valued random
variable X is the function defined on a real line and given by

ΦX(x) = P[X ≤ x] := P[ω ∈ Ω: X(ω) < x],

where the right-hand side represents the probability that the random variable X
takes on a value less than or equal to x.

Some basic and general properties of ΦX follow directly from the definition.

Proposition 1.1. Let X be a random variable defined on a probability space
(Ω,F ,P). Then ΦX is non-decreasing and right-continuous function on R and
moreover

lim
x→−∞

Φφ(x) = 0, lim
x→∞

Φφ(x) = 1.

Observe that if X is a purely discrete random variable, then ΦX will be discon-
tinuous at the points xi and constant in between. If ΦX of a real valued random
variable X is continuous, then X is a continuous random variable.

Definition 1.4. Let X be a discrete real random variable with sample space
Ω = {ωi}i. Then the corresponding probability distribution function PX : R→ [0, 1]
is defined by

PX(x) = P[X = x] = P[ω ∈ Ω: X(ω) = x].

Denoting by xi = X(ωi) and by pi := P[X = xi], the corresponding cumulative ΦX
is then

Φφ(x) =
∑
xi≤x

pi.
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Definition 1.5. Let X be a continuous random variable with absolutely con-
tinuous ΦX . Then there exists function ρX : R → R+, called probability density
function of X, such that for any real a < b

b∫
a

ρX(x) dx = ΦX (b)− ΦX(a) = P[X ∈ (a, b]].

Roughly speaking
ρX(x) = ∂xΦφ(x),

and using properties of cumulative ΦX we can write

Φφ(x) =

x∫
−∞

ρX(x) dx.

Definition 1.6. Let X be a real valued random variable defined on a probability
space (Ω,F ,P). We call{

E[X] =
∑
i xiPX(xi), (discrete probability space)

E[X] =
∫
R
xρ(x) dx, (continuous probability space)

by its expectation or average. Similarly, for any function f : R → R we have that
E[f(X)] =

∑
i xiPX(xi) for a discrete variable X and E[f(X)] =

∫
f(x)ρ(x) dx for

a continuous variable X.

Usually, if there is no ambiguous in the sense of probability measure, we will
write 〈X〉 to denote expectation E[X]. Expectation of random variable gives a
typical value of it, however it doesn’t mean that the RV is close to this value. The
quality of approximation is defined by the square root of variance:

Definition 1.7. Let X be a random variable defined on a probability space
(Ω,F ,P). Then

Var[X] =
〈

(X − 〈X〉)2
〉

=
〈
X2
〉
− 〈X〉2 ,

is called variance of RV X.

Definition 1.8. Let X be a random variable defined on a probability space
(Ω,F ,P). We call average of its nth power by its nth moment, i.e.

µn =

{∑
i x

n
i PX(xi), (discrete probability space)∫

R
xnρ(x) dx, (continuous probability space).

Definition 1.9. The moment generating function for a RV X is defined as

MX(t) =
〈
etX
〉
.

The moments of X can be obtained by derivation, i.e.

〈Xn〉 =
dn

d tn
MX (t)

∣∣∣∣
t=0

.

The last statement follows from the Taylor series expansion of the exponent.
Let us write (without rigorous explanation)

MX(t) =

〈 ∞∑
k=0

tkXk

k!

〉
=

∞∑
k=0

tk
〈
Xk
〉

k!
=

∞∑
k=0

tkµk
k!

.
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Definition 1.10. The characteristic function for a RV X is defined as

χX(t) =
〈
eitX

〉
.

The moments of X can be obtained by derivation, i.e.

〈Xn〉 = i−n
dn

d tn
χX (t)

∣∣∣∣
t=0

.

Proposition 1.2. The characteristic function χX for a RV X satisfies

χX(0) = 1, |χX (t)| ≤ 1, t ∈ R.

The variance of a RV X is an example of an important set of quantities that
can be thought as an alternative to the moments, called cumulants.

Definition 1.11. The cumulant generating function for a RV X is defined as

KX(t) = ln
〈
etX
〉
.

The cumulants of X are given by

⟪Xn⟫ :=
dn

d tn
KX (t)

∣∣∣∣
t=0

.

By definition, ⟪X⟫ = E[X] and ⟪X2⟫ = Var[X].


 Example Consider throwing two dices at the same time. What is the average sum
we will get? What is the average deviation from the average sum? We deal with discrete
random variable in this case. There are 36 possible outcomes Ω = {(a, b)}6a,b=1 with equal

probabilities 1
36

(we assume that we have fair dices). Let XA be the random variable
reporting the number associated to the outcome of the rolling of the dice A, taking values
in {a}6a=1, and similarly XB the outcome of the dice B, taking values in the same set
{b}6b=1. Our random variable is X = XA +XB and therefore

〈X〉 =

6∑
a,b=1

a+ b

36
= 7.

Var (X) =

6∑
a,b=1

(a+ b)2

36
− 49 =

1

3

6∑
a=1

a2 +
1

18

(
6∑
a=1

a

)2

− 49 =
91

3
+

441

18
− 49 =

35

6
.

2. The Dirac δ-function

We will try now to introduce a probability density distribution for a determin-
istic random variable. Let us assume that (Ω,F ,P) is be a probability space and
X : Ω→ R is a deterministic RV taking only value x0. Let us denote its, unknown
for now, density by δx0

(x). Such density has to satisfy some special properties. For
example, let us take any function f : R → R and consider new RV Y defined as
Y = f(X). By definition

E[Y ] =

∫
f(x)δx0(x) dx = f(x0).

Indeed, Y is a deterministic RV taking only value f (x0), which means that its
average should be equal to f(x0). The relation above is usually used as a definition
of Dirac δ-function. A Dirac δ-function is not a function in the common sense: no
such a quantity can be defined rigorously as a function, rather δx0

(x) should be
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intended as a distribution, i.e. it is defined by its action on a test function f(x).
This means that we are not allowed to talk about it as a function taking some
arbitrary values, but only as a part of the integrand. However, below we list some
properties of it that are similar to analogous ones for general functions but some of
them are different.

Definition 2.1. We say that δ(x) is a Dirac δ-function if for any smooth and
absolutely integrable function f(x) on R we have

(12)

∞∫
−∞

f(x)δ(x) dx = f(0).

The “shifted” δ-function δa(x) can be now simply written as δ(x1−a1), so that
for any function f(x) we have

∞∫
−∞

f(x)δ(x1 − a1) dx =

∞∫
−∞

f (x+ a) δ(x) dx = f(a).

Now taking different test functions f(x) we can obtain following properties of δ-
function:

Proposition 2.1. Let δ(x) be a Dirac δ-function defined by (12), then:

(1) The δ-function is normalized as a probability distribution, i.e.
∫∞
−∞ δ(x) dx =

1.
(2) If g(x) has n simple real roots x1, ..., xn then

(13) δ(g(x)) =

n∑
j=1

δ (x− xj)
|g′ (xj)|

.

In particular for a 6= 0 one has

δ (ax) =
1

|a|
δ(x).

(3) Let θ(x) be a Heaviside step function defined by

θ(x) =

{
1 if x ≥ 0,

0 if x < 0.

Then

(14)

x∫
−∞

δ(y) d y = θ(x)⇒ δ(x) =
d θ(x)

dx
,

where the derivative is taken in a distributional sense.
(4) Fourier transform and inverse Fourier transform of δ-function are given

by

F [δ] (X) =

∞∫
−∞

δ(x) eixX dx = 1,

F−1 [δ] (X) =
1

2π

∞∫
−∞

δ(x) e−ixX dx =
1

2π
.
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� Let us prove the formulas above. To prove that the integral of the δ-function
is 1, it is enough to take f(x) ≡ 1 in (12).

Eq. (13) is proved by showing that both sides of the equation have the same
effect inside an integration. Let us assume that there exist such n intervals
I1 t I2 t . . . t In = R that

• g(x) is monotonic on every Ij , j = 1, . . . , n;
• for every j = 1, . . . , n there is exactly one simple root of g(x) that

belongs to Ij .

Then for arbitrary absolutely integrable function f(x) on R we have
∞∫
−∞

f(x)δ (g(x)) dx =

n∑
j=1

∫
Ij

f(x)δ (g(x)) dx

s=g(x)
=

n∑
j=1

∫
Ij

f
(
g−1(s)

) δ(s) d s

g′ (g−1(s))

=

n∑
j=1

f (xj)

|g′ (xj)|

=

∞∫
−∞

f(x)

n∑
j=1

δ (x− xj)
|g′ (xj)|

dx.

The first part of Eq. (14) is obvious after one takes f(s) = θ(x− s). Then
x∫

−∞

δ(y) d y =

∞∫
−∞

f(y)δ(y) d y = f(0) = θ(x).

The second identity is proved by showing that both sides of the equation have the
same effect inside an integration. Let f(x) be an arbitrary absolutely integrable
on R. Then obviously f(x)→ 0 when x→∞. We have

∞∫
−∞

(
δ(x)− d θ(x)

dx

)
f(x) dx = f(0)− θ(x)f(x)|∞−∞ +

∞∫
−∞

θ(x)f ′(x) dx

= f(0) +

∞∫
0

f ′(x) dx = f(0) + f(x)|∞0 = 0.

Finally, the Fourier transform identities follow from the definition of δ-function.

The n-th derivative of δ(x) can be defined as a distribution on the set Cn+1(R)
by the identity

∞∫
−∞

f(x)δ(n)(x) dx = (−1)nf (n)(0).

This definition makes integration by parts valid while dealing with integrals con-
taining δ-function.

The introduction of the Dirac δ-function allows us to introduce a density ρ(x)
also for deterministic and discrete RVs. Indeed,
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• if X is a deterministic RV taking only value x0, then ρ(x) = δ (x− x0).
• if X is a discrete RV taking values {xi}ni=1 with probabilities {pi}ni=1, then
ρ(x) =

∑
i piδ (x− xi).

3. Conditional probability

The conditional probability P[A|B] can be intended as the probability that the
event A ⊂ Ω occurs given that the event B ⊂ Ω has already occurred. The so-called
Bayes’ Theorem follows directly from this definition, and it is given by the following
expression.

Definition 3.1. The conditional probability P[A|B] of the event A given B is
defined through Bayes’ formula

P[A|B]P[B] = P[A ∩B].

A B

Ω

A ∩B

Definition 3.2. If the conditioning does not affect the marginal probability,
then the two events are statistically independent

P[A|B] = P[A]⇔ P[A ∩B] = P[A]P[B].

Using the above definition of conditional probability distribution, one can define
conditional expectation, conditional moments, etc.


 Example Let us consider the following example. We have a population of individuals
and we consider the event A = sick individual and B = vaccinated individual.

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

♂

Ω

B A

In the picture above

P[A] =
8

100
, P[B] =

90

100
, P[A ∩B] =

4

100
so that

P[A|B] =
4

90
≈ 4.4%
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On the other hand

P[A|Bc] =
4

10
= 40%.

Observe also that P[B|A] = 4
8

= 50%: there is an important difference (qualitative and
quantitative) between P[B|A] and P[A|B].

4. Multidimensional random variables

It is natural to consider experiments in which multiple outcomes occur at the
same time, for example the observation of the positions of n particles after running
some dynamical model. It is natural then to take Ω = Ω1 × Ω2 × . . . × Ωn, where
n is the number of such outcomes, Ωj being the state space in which the jth
outcome lives. We can then define a multidimensional distribution describing a
multidimensional random variables.

Definition 4.1. Let Ω = Ω1×Ω2× . . .×Ωn be a state space for the probability
space (Ω,F ,P). We then say that P defines joint probability distribution for the
vector random variable X : Ω→ Rn.

In discrete settings this probability distribution is defined by probabilities
PX(x) = P[X = x], while in continuous setting we can introduce probability den-
sity ρX(x). Both quantities are non-negative and satisfy normalization

∑
x PX(x) =

1 in the discrete setting and
∫
x
ρX(x) dx = 1 in the continuous one.

Definition 4.2. Starting from a joint probability, we can obtain the probability
of the i-th component by summing over other components

Pi(ω) = P[Xi = x] =
∑

y,yi=xi

PX(y).

The quantity Pi(x) is the marginal probability of Xi.

Analogously to the one dimensional case, we can introduce random variables,
their averages and moments. For example the cumulative for the joint probability
distribution will take a form

ΦX(x) = P[X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn],

and the density of joint distribution is given by

ρX(x) =

[
n∏
i=1

∂

∂xi

]
ΦX(x).

Finally, one can generalize the concept of δ-function to any dimension n by

Definition 4.3. We say that δ(x) is a n-dimensional Dirac δ-function if for
any x ∈ Rn we have

δ(x) =

n∏
j=1

δ(xj).

The above definition yields that for any smooth and integrable function f : Rn →
R we have ∫

Rn

f(x)δ(x) = f (0) .



4. MULTIDIMENSIONAL RANDOM VARIABLES 57

Given a multidimensional random variable, it is convenient to estimate how much
the different components are “dependent” from each other. One way is to compute
their covariance. For simplicity we restrict now ourselves to the case n = 2, the
generic case being a straightforward generalisation.

Definition 4.4. Given a multidimensional RV X = (X1, X2), we define the
covariance between X1 and X2 as

Cov[X1, X2] := E[X1X2]− E[X1]E[X2] = E[(X1 − E[X1]) (X2 − E[X2])].

Suppose now that the variables are continuous and let ρX (x1, x2) be a den-
sity of the joint probability distribution for X1, X2, and ρXj (x) be corresponded
marginal densities. Then by definition

Cov[X1, X2] =

∫∫
x1x2ρX (x1, x2) dx1 dx2 −

∫
xρX1

(x) dx

∫
xρX2

(x) dx

=

∫∫
(x1 − E[X1]) (x2 − E[X2]) ρX (x1, x2) dx1 dx2.

As anticipated, covariance is usually used to study the dependence (correlation)
between two RVs.

Definition 4.5. Random variables whose covariance is zero are called uncor-
related.

However one should distinguish between being statistically independent and
uncorrelated. Independence implies absence of correlation, but not vice versa.

Proposition 4.1. Let X1, X2 be two statistically independent random variables
defined on the same probability space. Then they are uncorrelated as well.

Proof. If X1, X2 are statistically independent, then

ρX (x1, x2) = ρX1
(x1)ρX2

(x2),

that yields Cov[X1, X2] = E[X1X2] − E[X1]E[X2] = E[X1]E[X2] − E[X1]E[X2] =
0. �

If nulle covariance is an indicator of absence of correlation, covariance itself is
not a proper measure of the correlation between RVs. A true indicator of depen-
dence is so called correlation coefficient, which rescale the covariance by the size of
the fluctuations of each of the factors involved in its definition.

Definition 4.6. Let X1, X2 be two random variables defined on the same prob-
ability space. Then we define their correlation coefficient by

%X1,X2
=

Cov[X1, X2]√
Var[X1] Var[X2]

.

Proposition 4.2. Let X1, X2 be two random variables defined on the same
probability space. Then

|%X1,X2 | ≤ 1,

moreover %X1,X2 = 1 corresponds to perfect positive linear relationship and ρX1,X2 =
−1 corresponds to perfect negative linear relationship.

In the case of general multidimensional RV it is natural to consider all pairwise
correlations between coordinates.
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Definition 4.7. Let X be a multidimensional RV. Its covariance matrix CX
is the real symmetric matrix whose entries

Cij = Cov (Xi, Xj) .

Proposition 4.3. For any multidimensional RV its covariance matrix CX is
non-negative definite, i.e. for any x ∈ Rn

〈x,CXx〉 ≥ 0,

or equivalently all the eigenvalues of CX are real and non-negative.

Let us also note that the diagonal elements are Cii = Var (Xi). If all coordi-
nates Xi’s are statistically independent, thenCX is a diagonal matrix. Analogously
one can define correlation matrix as the matrix whose entries are correlations coef-
ficients.

5. A list of relevant random variables

� The discrete delta Let X be a discrete RV taking integer values with
probabilities

PX(n) = δn,n0
n ∈ N.

meaning that it takes a certain value n0 with probability 1 and all other values
with probability 0 (i.e. it is certain that its value is n0). This random variable
behaves as a “discrete δ-function”. In particular

• 〈X〉 = n0.
• Var(X) = 0.
• MX (t) = en0t and χX (t) = ein0t.

� Poisson random variable Let X be a discrete RV taking non-negative
integer values with probabilities

PX(n) =
λn e−λ

n!
n ∈ N.

This is said to be a Poisson random variable with parameter λ. It has the
following properties

• 〈X〉 = λ.
• Var(X) = λ.

• MX (t) = eλ(et−1), χX (t) = eλ(eit−1).

� Bernoulli random variable Let X be a discrete RV taking values {0, 1}
with probabilities

PX(1) = p, PX(0) = 1− p.
or equivalently

PX(n) = pδn,1 + (1− p)δn,0.
This is a Bernoulli random variable and it has the following properties.

• 〈X〉 = p.
• Var(X) = p (1− p).
• MX (t) = 1 + p (et−1) and χX (t) = 1 + p

(
eit−1

)
.
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� Exponential random variable We say that continuous RV X has expo-
nential distribution with parameter λ if its density is given by

(15) ρ(x) =

{
λe−λx, if x ≥ 0,

0, if x < 0.

Such variable has the following properties:

• 〈X〉 = 1
λ .

• Var(X) = 1
λ2 .

• 〈Xp〉 = p!
λp .

• MX (t) = λ
λ−t for λ < t, and χX (t) = λ

λ−it .

�Gaussian random variable We say that the continuous RV X has a normal
(Gaussian) distribution with average µ and variance σ2 if its density is given by

(16) ρ(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 x ∈ R.

We write that X ∼ N (µ, σ2). A Gaussian random variable has the following
properties

• 〈X〉 = µ.
• Var(X) = σ2.

• MX (t) = eµt+
1
2σ

2t2 and χX (t) = eiµt−
1
2σ

2t2 .

The normal distribution is a fundamental distribution mostly due to the cen-
tral limit theorem. Roughly speaking, the theorem says that if we have a set
{Xi}ni=1 of random variables which are independent and have the same distribu-
tion with mean µ and finite variance σ2, given their average Zn := 1

n

∑n
i=1Xi,

then Zn
n→+∞−−−−−→ N (µ, σ2/n). Physical quantities that are expected to be the sum

of many independent processes (such as measurement errors) often have distri-
butions that are nearly normal. Moreover, many results and methods (such as
propagation of uncertainty and least squares parameter fitting) can be derived
analytically in explicit form when the relevant variables are normally distributed.

� Multivariate Gaussian distribution We say that multidimensional con-
tinuous RV X has a normal (Gaussian) distribution with mean vector µ and
positive definite covariance matrix Σ if its density is given by

ρ(x) =
1√

2π det Σ
e−

1
2 〈x−µ,Σ−1(x−µ)〉 x ∈ Rn.

It has the following properties.

• All marginal distributions of X are also Gaussian.
• Every RV variable Xj is a Gaussian RV with mean µj and variance

Σjj .
• The covariance of Xi and Xj is given by Σi,j , while the correlation is

given by
Σij√
ΣiiΣjj

.

• MX (t) = e〈t,µ〉+
1
2 〈t,Σt〉 and χX (t) = ei〈t,µ〉−

1
2 〈t,Σt〉.
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The computation of higher moments of a multivariate Gaussian distributed ran-
dom variable can be performed using Wick’s theorem. Wick’s theorem is a
method in Quantum Field Theory of reducing high-order derivatives to a com-
binatorics problem. This result allows to calculate high-order moments by using
values of second order moments. Formally

Theorem 5.1. Let X be distributed according to multivariate Gaussian dis-
tribution with zero mean vector µ = 0 and covariance matrix Σ. Then for any
even sized set of indexes (j1, j2, . . . , j2k) ⊂ {1, . . . , n}2m

〈Xj1Xj2 . . . Xj2k〉 =
∑
σ∈P2k

k∏
m=1

〈
Xjσ(2m−1)

Xjσ(2m)

〉
,

where summation in σ runs over all pairings P2k of (j1, j2, . . . , j2k).

For example, if X ∼ N
(
0, σ2

)
, then

〈
X2
〉

= σ2. Let us calculate
〈
X6
〉
. We

can write it as

〈XXXXXX〉 =
∑
σ∈P6

〈XX〉 〈XX〉 〈XX〉

= σ6# {pairings of 1, 2, 3, 4, 5, 6} = 15σ6.

� Deterministic RV as a limit of Gaussian RV As discussed earlier, one
can define deterministic RV as a continuous RV with density given by δ-function.
However, the δ-function is not a proper function in a wide sense and some
calculations with deterministic RV will need some justifications. One of the ways
is to derive a “limiting” formula for the δ-function. In particular, one possibility
is to take a zero-average normal distribution and send its variance/width to zero,
i.e., write

δ(x) = lim
σ→0

pσ(x), pσ(x) =
1√

2πσ2
e−

x2

2σ2 .

This definition is also not proper definition of a function as one can check

lim
σ→0

pσ(x) =

{
0, x 6= 0,

∞, x = 0.

However, we realize that δ(x) only serves to calculate averages; it only has a
meaning inside an integration. If we adopt the convention that one should set
σ → 0 in above only after performing corresponding integration, we can use
above for our calculations. For example,
∞∫
−∞

δ(x)f(x) dx = lim
σ→0

∞∫
−∞

pσ(x)f(x) dx = lim
σ→0

∞∫
−∞

dx√
2π

e−x
2/2 f(σx) = f(0).

∞∫
−∞

δ′(x)f(x) = lim
σ→0

∞∫
−∞

{
d

dx

(
pσ(x)f(x)

)
− pσ(x)f ′(x)

}
= lim

σ→0
pσ(x)f(x)|∞−∞ − f ′(0) = −f ′(0).
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Exercises

(1) Calculate following integrals

(a)
∫∞
−∞ 7δ(x) e−x

2

cosxdx.

(b)
∫ 5

−5

(
x2 + 2x+ 1

)
δ (x− 1) dx.

(c)
∫∞

0
(cos (3x) + 2) δ (x− π) dx.

(d)
∫ 1

−1
e−x

2

cos(x)δ (x− 2) dx.

(2) Let f : R→ R be a deterministic, smooth enough function. Assume that
it has finitely many distinct simple zeros (x1, x2, . . . , xn) ⊂ R. Prove the
Kac–Rice formula

{Number of zeros of f(x) in (a, b)} =

b∫
a

δ (f(x)) |f ′(x)|dx.

(3) Let X1 and X2 be continuous random variables with joint probability
density function

p (x1, x2) = k
(
1− x1x

2
2

)
, x1, x2 ∈ [0, 1] .

(a) Find the value of k.
(b) Calculate the marginal densities pX1

(x) and pX2
(x).

(c) Calculate the corresponding marginal means.
(d) Are X1 and X2 independent?
(e) Find the covariance between X1 and X2.
(f) Calculate the conditional density of X2 given X1 = 1/3.

(4) A diagnostic test for a disease is such that it (correctly) detects the disease
in 90% of the individuals who actually have the disease. Also, if a person
does not have the disease the test will report that he or she does not
have it with probability 0.9. Only 1% of the population has the disease
in question. If a person is chosen at random from the population and the
diagnostic test indicates that she has the disease, what is the conditional
probability that she does in fact have the disease? Would you call this
diagnostic test reliable?

(5) Assume that Y is Normally distributed such that Y ∼ N
(
µ, σ2

)
. After

observing a value Y a mathematician constructs a rectangle with length
L = |Y | and width W = 3 |Y |. Let A denote the area of the resulting
rectangle. What is the expected area 〈A〉?

(6) Consider the bi-variate Gaussian distribution defined by the density

P2 (x1, x2) =

√
1− λ2

(2πσ2)
2 exp

{
− 1

2σ2

(
x2

1 − 2λx1x2 + x2
2

)}
,

where the parameter λ ∈ (−1, 1) is such to ensure that the quadratic
form in the exponent is positive definite. To fix ideas, one may inter-
pret P2 (x1, x2) as the Boltzmann distribution of two harmonic oscillators
coupled by a potential term proportional to x1x2.
(a) Verify that this is well normalized by direct integration or by compar-

ing our distribution with the zero-mean multidimensional Gaussian
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distribution

P (x) =

√
(2π)

N

detA
e−

1
2 〈x,Ax〉 where A =

(
1 −λ
−λ 1

)
.

(b) Verify that the marginal probability of the individual variables is

P1(x) =
1√

2πσ2
λ

e
− x2

2σ2
λ with σ2

λ =
σ2

1− λ2
.

Verify that σ2
λ is the variance ⟪x2

1⟫ :=
〈
x2

1

〉
− 〈x1〉2.

(c) Show that the covariance of x1 and x2 is

⟪x1x2⟫ := 〈x1x2〉 − 〈x1〉 〈x2〉 = λσ2
λ.

(d) Often it is convenient to calculate the normalised variance, or corre-
lation coefficient,

ρ :=
⟪x1x2⟫√⟪x2

1⟫⟪x2
2⟫
.

Show that this is merely given by λ. Therefore the parameter λ in
the distribution is a measure of how correlated the variables x1 and
x2 are. Note that in the limit λ→ 0 the variables are not correlated
at all and the distribution factorizes

P2 (x1, x2)|λ=0 = P1(x1)P1(x2).

In the limit λ → 1 the variables are maximally correlated and the
distribution becomes a function of x1 − x2 but it is not normalisable
anymore. We can now interpret the increase of the variance with λ:
the correlation between the variables allow them to take arbitrarily
large values, with the only restriction of their difference being small.

(e) By using Bayes rule show that

P1|1 (x1|x2) =
P2 (x1, x2)

P1(x2)
=

1√
2πσ2

exp

{
− 1

2σ2
(x1 − λx2)

2

}
.

Then, at λ = 0 (no correlation) the values taken by x1 are indepen-
dent of x2, while for λ → 1 they are centred around those taken by
x2, and hence strongly conditioned by them.
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Probability (continue)

1. Foundations of Information Theory

We would like to develop a usable measure of the information we get from
observing the occurrence of an event E having probability p = P[E]. Our first
reduction will be to ignore any particular features of the event, and only observe
whether or not it happened. Thus we will think of an event as the observance of a
symbol whose probability of occurring is p. We will thus be defining the information
in terms of the probability p.

The approach we will be taking here is axiomatic: below is a list of the four
fundamental axioms we will use to define our information measure I(p):

(1) Information is a non-negative quantity: I(p) ≥ 0.
(2) If an event has probability 1, we get no information from the occurrence

of the event, I (1) = 0.
(3) If two independent events E1 and E2 occur, then the information we get

from observing the events is the sum of the two informations,

I (P[E1 ∩ E2]) = I (P[E1]) + I (P[E2]) .

(4) We will want our information function I to be a continuous, and, in fact,
monotonic function of the probability, so that slight changes in probability
should result in slight changes in information.

It is possible to show that the requirement above are compatible with the form

I(p) = − loga(p)

for some positive constant a. The base a determines the units we are using.

1.1. Shannon entropy. The probability distribution P of a RV X is a tool
to quantify the “information content” of the possible values X it can assume. If
we consider the state of a RV as a “message” communicated between a sender and
a receiver, one could ask: which is the average amount of information needed to
specify this message? Let us use the shorthand notation p(x) := P[X = x] in the
following. We thus need to define a measure, HX [p] of the information content,
with the following properties

(1) HX is a monotonic decreasing function of p(x). In fact, the information
can be seen as the “degree of surprise” on learning the state of X: the
more an event is unlikely, the more information we discover, while if an
event occurs almost certainly, the gain of information is really low.

(2) HX is additive if two events are statistically independent, i.e. the total in-
formation is simply the sumHX+Y = HX+HY whenever P[X = x, Y = y] =
P[X = x]P[Y = y].

63
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Definition 1.1. Let X be a discrete random variable defined on the probability
space (Ω,F ,P). We define its Shannon entropy HX by

HX [p] = −
∑
x

p(x) log2 p(x) = −E[log2 p(x)],

where we define by continuity 0 log2 0 = 0.

In this section we use the logarithm with base 2, which is well adapted to digital
communication, and the entropy is then expressed in bits. The choice of the basis
for the log is arbitrary: the most common convention is log2. One can switch to
natural logarithms ln and the definition differs simply of a factor ln 2, i.e.

(17) HX [p] = − 1

ln 2

∑
x

p(x) log2 p(x)

In this way, the information is measured in nats, natural digits.
When there is no ambiguity we use H instead of HX . Intuitively, the entropy

gives a measure of the uncertainty of the random variable. It is sometimes called the
missing information: the larger the entropy, the less a priori information one has on
the value of the random variable. This measure is roughly speaking the logarithm
of the number of typical values that the variable can take, as the following examples
show.


 Example A fair coin has two values with equal probability. Its entropy is 1 bit.


 Example Imagine throwing M fair coins: the number of all possible outcomes is 2M .
The entropy equals M bits.


 Example A fair dice with n faces has entropy log2 n.


 Example DNA is built from a sequence of bases which are of four types, A, T,G,C.
In natural DNA of primates, the four bases have nearly the same frequency, and the
entropy per base, if one makes the simplifying assumptions of independence of the various
bases, is H = − log2(1/4) = 2. In some genera of bacteria, one can have big differences
in concentrations: p (G) = p (C) = 0.38, p (A) = p (T ) = 0.12, giving a smaller entropy
H ' 1.79.

Definition 1.2. Let X be a continuous random variable defined on probability
space (Ω,F ,P) with density ρ(x). We define its Shannon entropy HX by

HX [ρ] = −
∫
R

ρ(x) log2 ρ(x) dx.

Theorem 1.1 (Properties of Shannon entropy). For any random variable X
its Shannon entropy satisfies the following properties.

(1) HX ≥ 0 with the equality iff X is a deterministic RV, i.e. ρ(x) = δ(x− c)
for some c.
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(2) if X is a deterministic RV on a probability space (Ω,F ,P) with |Ω| = n,
then HX ≤ log2 n with the equality holding iff p(x) ≡ 1

n for any feasible
x, i.e. uniform distribution.

1.2. Statistical Inference. “Entropy” is a key concept in information theory
and has several applications in the context of Statistical Inference. This name
denotes a broad class of problems where a set of data x is given but p(x) is either
unknown or not completely specified and the task is thus to estimate it. Assume for
example that the “true” distribution p(x) is infeasible to evaluate exactly, thus we
describe it by some approximating distribution q(x): what is the additional amount
of information required to specify the state of x by means of q(x)? The answer is
provided by the relative entropy of the distributions p(x) and q(x) (or Kullback-
Leibler divergence) KL(p‖q) which is a measure of the dissimilarity between p(x)
and q(x), thus one usually tries to improve the approximation by minimizing the
KL divergence. This is defined as:

Definition 1.3. The Kullback-Leibler divergence between two discrete proba-
bility distributions p(x) and q(x) over the same finite space Ω is defined as

KL(p‖q) =
∑
x

p(x) log2

p(x)

q(x)
,

where we adopt the conventions 0 log 0 = 0, 0 log(0/0) = 0.

One can show that KL divergence have the following properties

Theorem 1.2. Let p(x) and q(x) be two discrete probability distributions over
the same finite space Ω. Then

(1) KL(p‖q) is convex in p(x);
(2) KL(p‖q) ≥ 0 with equality holding only for p(x) ≡ q(x).

This theorem follows from the convexity of function f(x) = − log2 x and
Jensen’s inequality. The KL divergence KL(p‖q) thus looks like a distance between
the probability distributions p and q, although it is not symmetric. A symmetrised
version is provided by the so-called Jeffrey’s divergence

J(p‖q) =
KL(p‖q) + KL (q||p)

2
.

1.3. Maximum-entropy distributions. Suppose that some detail on p(x)
is available. For example we may have an estimate h? for the average value E[h(X)]
of some function h. The task is to fully characterise p(x) starting from that average.
Recall that the “entropy” of x is the degree of surprise on learning its state, thus it
quantifies our ignorance about x, how uncertain are in average the observations of
x. In light of that, a principle often applied in statistical inference is the Maximum
Entropy Principle (MaxEnt).

The best estimate for p(x) is the one that maximizes HX [p] and is compatible
with the available knowledge onX (i.e. subject to the constraints given by E[h(X)]).
This estimate is believed to be the best one as it is the most unbiased, the one that
prevents us from inappropriate assumptions. Let us now derive the p(x) satisfyng
the MaxEnt principle. We have to find

p?(x) = arg max
p

HX [p]
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subject to the constraints∑
x

p(x) = 1 h? = E[h(x)] =
∑
x

p(x)h(x).

We write H[p] = −k
∑
x p(x) ln p(x), where k = 1

ln 2 . Such a problem can be
solved by the method of Lagrange multipliers. We thus introduce two quantities,
called Lagrange multipliers, λ0 and λ1, which allow us to translate our constrained
maximization problem into an unconstrained one for

HX [p;λ0, λ1] := H[p] + kλ0

(∑
x

p(x)− 1

)
+ kλ1

(∑
x

p(x)h(x)− h?
)
.

The maximizing distribution is found by solving
∂

∂p(x)HX [p;λ0, λ1] =⇒ ln p(x) = −1 + λ0 + λ1h(x)
∂
∂λ0

HX [p;λ0, λ1] = 0 =⇒
∑
x p(x) = 1

∂
∂λ1

HX [p;λ0, λ1] = 0 =⇒
∑
x∈A p(x)h(x) = h?.

From the first equation it can be seen that

p(x) = exp (λ0 + λ1h(x)− 1) =
1

Z
exp (λ1h(x)),

where Z = exp (1− λ0) must be equal to Z =
∑
x exp (λ1h(x)) because of the

normalisation constraints, i.e., λ0 = 1 − lnZ,. Finally, λ1 is chosen by enforcing
the requirement on average and such as to satisfy∑

x

p(x)h(x) =
∂ lnZ

∂λ1
= h?

Note that since HX [p] is a strictly concave function, the solution of this opti-
mization problem is unique and consists of a maximum.

1.4. Generalizations to many variables systems. More in general, we
may have a vectorial random variable X = (X1, . . . , XN ) and we may know the
expected values h?µ of specific measurements hµ(X), with µ = 1, . . . ,K, that we
will denote briefly h(X) = (h1(x), . . . , hK(x)). The maximum-entropy distribution
subject to the constraints

∑
x p(x) = 1 and

∑
x p(x)hµ(x) = h?µ for all µ = 1, . . . ,K

is found again by the Lagrange maximisation method now involving K+1 Lagrange
parameters {λµ}Kµ=0, K of which corresponding to the imposed constraints and
with λ0 representing the normalisation requirement

∑
x p(x) = 1. The condition

to impose for each p(x) is then

∂

∂p(x)

[
HX [p]− λ0

(
1−
∑
x

p(x)
)
−

K∑
µ=1

λµ

(
h?µ −

∑
x

p(x)hµ(x)
)]

= 0

where HX [p] = −k
∑
x p(x) ln p(x). The solution of these latter equations takes

the form

(18) p(x) =
e
∑K
µ=1 λµhµ(x)

Z
, Z =

∑
x

e
∑K
µ=1 λµhµ(x)

in which the parameters {λ1, . . . , λK} are found by solving the coupled equations

∀µ ∈ {1, . . . ,K} : h?µ =
∂ lnZ

∂λµ
=

1

Z

∑
x

hµ(x) e
∑K
µ=1 λµhµ(x) .
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Solving the equation above, whether analytically or numerically, can unfortunately
be quite difficult. The distribution (18) denotes the ensemble of microscopic config-
urations x compatible with prescribed averages of macroscopic observables h(X)
and is often referred to as the exponential model in statistics and the canonical en-
semble in the statistical mechanical gergon. The normalizing constant Z is called,
in the statitical mechanical gergon, the partition function and denotes the effective
number of microscopic configurations x compatible with the imposed values of the
ensemble averages of h(X).

In canonical ensembles we tend to regard the probabilities p(x) as parametrised
directly by the vector λ = (λ1, . . . , λK). We no longer view these latter parameters
as unknown complicated functions of the values h? and we simply write

p(x) =
e〈λ,h(x)〉

Z(λ)
, Z(λ) =

∑
x

e〈λ,h(x)〉

Observe that in the above derivation we should in principle have included also the
inequality constraints p(x) ≥ 0 for all x when maximising the Shannon entropy –
after all, probabilities are not allowed to be negative. However, it turned out in
both cases that even without imposing them explicitly, the inequality constraints
are satisfied automatically by the maximum entropy distributions we obtained.

1.4.1. Microcanonical ensembles. The so-called microcanonical ensembles refers
to ensembles where the constraints are not only satistified on average, but by each
configuration x of the ensemble i.e., h(x) = h? ∀x. Clearly in this case

p(x) =
δh(x),h?

Z
Z =

∑
x

δh(x),h? .

1.4.2. Averages, fluctuations and susceptibilities. Once the parameter values λ
of the canonical ensemble are gieven, one can use the corresponding probability
distribution p(x) to estimate the value of any observable ϕ(x) by calculating the
ensemble average

E[ϕ(x)] =

∑
x ϕ(x) e〈λ,h(x)〉

Z(λ)

In particular, remember that the expectation values for the key observables hµ(x)
can all be written as partial derivatives of the quantity Φ(λ) = lnZ(λ), which
apparently acts as a generating function. In the terminology of statistical physics
the quantity Φ(λ) would, apart from an overall multiplicative constant, be called
the ‘free entropy’. For the fluctuations in the key observables we have

Var[hµ(X)] = E[h2
µ(X)]− (E[hµ(X)])

2

=
1

Z(λ)

∑
x

h2
µ(x) e〈λ,h(x)〉−

( 1

Z(λ)

∂Z(λ)

∂λµ

)2

=
1

Z(λ)

∂2Z(λ)

∂λ2
µ

− 1

Z2(λ)

(
∂Z(λ)

∂λµ

)2

=
∂

∂λµ

(
1

Z(λ)

∂Z(λ)

∂λµ

)
=
∂2Φ(λ)

∂λ2
µ

From the above relations it also follows that

Var[hµ(X)] =
∂

∂λµ
E[hµ(X)].
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The latter quantity is called susceptibility ; it measures the sensitivity of E[hµ(X)]
to changes in its associated control variable λµ. All identities derived so far rely
solely on the exponential dependence of the probabilities on the control parameters.

1.4.3. Gibbs-Boltzmann distribution. The concept of “entropy” in physics was
introduced much earlier by Boltzmann in equilibrium thermodynamics as a measure
of the “disorder” of a physical state of matter.

Consider a physical system at a certain temperature T > 0 and with a set of
possible configurations x, and let it evolve in time: after a while, it reaches a so
called “thermal equilibrium“ state and its properties (e.g., its energy) just fluctuate
around constant average values. A basic assumption of statistical mechanics is that
the “thermal equilibrium” of a system is the one that maximises the entropy.

It is reasonable to assume that this asymptotic macroscopic state is the one for
which the number of compatible microscopic configurations (i.e. the multiplicity) is
maximum. We can then find the equilibrium probability distribution by maximizing
the thermodynamical entropy under the constraints of normalization and some fixed
energy level (i.e. some fixed macroscopic average)

E =
∑
x

p(x)H(x)

where H(x) is a function of the configuration x that contains all the contribu-
tions to the overall energy (interactions, kinetic energy, potential energy), called
Hamiltonian of the system. By proceeding as before, one obtains the fundamental
result of SM that in thermal equilibrium each of the possible states x occurs with
a probability

p(x) =
1

Z(β)
e−βH(x)

where the Lagrange multiplier for the average energy E is λ1 = −β = −1/T . This
is known as the Gibbs-Boltzmann distribution, i.e. distribution of states at equi-
librium for a system at temperature T , when the energy structure of each possible
configuration x is described by H(x). The partition function Z thus reads

Z(β) =
∑
x

e−βH(x) .

It is easy to show1 that the free energy F = E−TS is the Lagrangian of the entropy
maximization subject to constraints on the average energy.

2. Stochastic processes

Definition 2.1 (formal). A stochastic process is defined as a collection of
random variables Xt indexed by t ∈ T with some set T , all taking values in the
same sample space Ω, which must be measurable with respect to event space F and
measure P.

Informally, we can say that (Xt, t ∈ T ) is a stochastic process in probability
space (Ω,F ,P) if for any t ∈ T , the corresponding Xt is a random variable in
(Ω,F ,P). Usually, due to a nature of the process we distinguish

(1) discrete-time processes if T is finite or countable, e.g. T = Z or T = N;
(2) continuous-time processes, if T is uncountable, e.g. T = R or T = R+.

Stationary processes play a very relevant role in the study of stochastic processes.

1Do it as exercise.
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Definition 2.2. Let (Xt, t ∈ T ) be a stochastic process and let ΦX (xt1 , . . . , xtk)
be the cumulative distribution function of the joint distribution of Xt at times
t1, . . . , tk, i.e.,

ΦX(xt1 , . . . , xtk) := P[Xt1 < xt1 , . . . , XtN < xtN ].

Then, (Xt, t ∈ T ) is said to be strictly (or strongly) stationary if, for all k, for all
τ , and for all t1, . . . , tk

ΦX (xt1+τ , . . . , xtk+τ ) = ΦX (xt1 , . . . , xtk) .

A stochastic process is called Markov process if the next value of the process
depends on the current value, but it is conditionally independent of the previous
values of the stochastic process. More precisely, let (Ω,F ,P) be a probability space
with a filtration {Fs}s∈T for some (totally ordered) index set T : this means that
∀t ∈ T , Ft ⊆ F σ-algebra, and if t < t′ then Ft ⊆ Ft′ . If we have, e.g., a stochastic
process X = {Xt : Ω→ R}t, we say that the process is adapted to such filtration if
Xs is measurable on Fs: in a sense, the process “cannot see in the future”.

� Suppose for example that we consider the process Xt given by two coin tosses,
with t = 1, 2. Denoting Ω0 = {H,T} as the space of outcome of one coin toss,
the space of possible outcomes is

Ω = Ω0 × Ω0.

At time t = 0 we have that
F0 = {∅,Ω}

because we have no information: there are two possible events, something hap-
pens, Ω, with probability 1, and nothing happens, ∅, with probability zero. Then
we toss a coin. Now we have

F1 = {∅,Ω, {H} × Ω0, {T} × Ω0}
Indeed, we know what the outcome of the first toss was, so we added to our
sets options with given first element, but all elements in F1 have no information
about the second toss. After the second toss, we can add as events the specific
detailed sequences of outcomes, i.e.,

F2 = {∅,Ω, {H} × Ω0, {T} × Ω0, {H,T}, {H,H}, {T,H}, {T, T}}
which are all subsets of Ω. The sequence F0 ⊆ F1 ⊆ F2 is a filtration.

The stochastic process is said to satisfy the Markov property if, for each A ⊆ R
and each s, t ∈ T with s < t,

P[Xt ∈ A|Fs] = P[Xt ∈ A|Xs].

In the case in which T = N, given a sequence {An}n, this can be reformulated as
follows:

P[Xn ∈ An|Xn−1 ∈ An−1, . . . , X0 ∈ A0] = P[Xn ∈ An|Xn−1 ∈ An−1].


 Example [Random walk on Z] Let us assume that we have a particle moving along
the Z lattice according to the following dynamics: starting from X0 = 0, every second it
chooses to jump to the right with probability p ∈ (0, 1) and to the left with probability
1− p. We denote Xt the position of the particle at time t Obviously, its position at time



70 5. PROBABILITY (CONTINUE)

t = n depends only on a position at time t = n− 1. This process is not stationary, but it
is Markovian. The process is called symmetric if p = 1/2. Let us mention that all variables
Xm+1 −Xm are independent and have mean 2p− 1 and variance 1, so that

E[Xn] = E[Xn −Xn−1 +Xn−1 −Xn−2 + . . .+X1 −X0] = n (2p− 1) .

And one can see that for a symmetric random walk average displacement is 0. Let m ≥ n,
then

E[XnXm] = E[X2
n] + E[Xn (Xm −Xn)] = E[X2

n] + E[Xn]E[Xm−n],

where we used statistical independence of Xm −Xn and Xn and the observation that the
difference Xm −Xn is distributed as Xm−n. Moreover,

E[X2
n] = E[(Xn −Xn−1 +Xn−1 −Xn−2 + . . .+X1 −X0)2]

= E[(Xn −Xn−1)2 + . . .+ (X1 −X0)2 + 2
∑
j<k

(Xn−j −Xn−j−1) (Xn−k −Xn−k−1)]

= n+ n (n− 1) (2p− 1)2 .

Finally
Cov[Xn, Xm] = n

(
4p− 4p2) = 4p (1− p) min {n,m} .

Continuous Markovian processes satisfy the following

Theorem 2.1 (Chapman-Kolmogorov equation). For any s < τ < t ∈ T and
x, y ∈ S

ρ (x, t|y, s) =

∫
ρ (x, t|z, τ) ρ (z, τ |y, s) d z.

Finally, a relevant type of Markov processes are Markov chains.

Definition 2.3. A Markov chain is a type of Markov process that has either
discrete state space or discrete index set (often representing time).


 Example [Wiener process/Brownian motion] The Wiener process (Wt, t ∈ R+) is
characterised by the following properties:

(1) W0 = 0 almost surely;
(2) Wt has independent increments, i.e., for ∀t > 0, the future increments Wt+u −

Wt, for u ≥ 0, are independent of the past values {Ws, s ≤ t}.
(3) Wt has Gaussian increments, i.e. Wt+u−Wt is normally distributed with mean

0 and variance u : Wt+u −Wt ∼ N (0, u).
(4) Wt is continuous in t almost surely.

We calculate below expectation and covariance of the values of Wiener process at different
times.

E[Wt] = E[Wt −W0 +W0] = E[Wt −W0] + E[W0] = 0.

Let t ≥ s, then

E[WtWs] = E[(Wt −Ws)Ws +W 2
s ] = E[Wt −Ws]E[Ws] + E[W 2

s ]

= E[W 2
s ] = E[(Ws −W0)2 + 2 (Ws −W0)W0 +W 2

0 ] = s.

And finally
Cov[Wt,Ws] = min {t, s} .

Brownian motion can be thought as a limit of simple symmetric random walk with diffu-
sional scaling.
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3. Path integration

Gaussian integrals are the basic tools behind the functional integral formalism
(or path integral), which has prominent relevance in modern physics and mathe-
matics. Suppose that we have a walker on a real line starting in x0 at n = 0, so
p0(x) = δ(x − x0). This walker is subject to a Markovian dynamics: at each time
n = 1, 2, . . . , it jumps to a new position with some probability. The probability of
the particle of being in position x at step n is equal to

pt(xn) =

∫
dxn−1ρ(xn, xn−1)pn−1(xn−1),

∫
dxnρ(x, x′) = 1,

where ρ(x, x′) is the probability to jump from x′ to x: here we are assuming that
the process is homogenous, i.e., q does not depend on time. We also assume that
the process is translational invariant, e.g., ρ(x, x′) ≡ ρ(x− x′) so that ρ(r) decays
reasonably fast for large |r|. Due to the Markov process we can write

pn(xn) =

∫
dxn−1 ρ(xn − xn−1)pn−1(xn−1)

=

∫
dxn−1

∫
dxn−2 ρ(xn − xn−1)ρ(xn−1 − xn−2)pn−2(xn−2)

=

n−1∏
k=1

[∫
dxkρ(xk − xk−1)

]
.

If we choose

ρ(r) =
1√

2πσ2
e−

r2

2σ2

then the integral can be written as

pn(xn) =
1

(2πσ2)
n−1

2

n−1∏
k=1

[∫
dxk

]
e−S(x)

where x = (x0, . . . , xn) and

S(x) :=

n−1∑
k=0

(xk − xk−1)2

2σ2

2 4 6

−2

−1

1

n

q

Let us now introduce a ‘time’ variable

tk = kε, k = 0, . . . , n, tn = nε ≡ t
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and the new variable

q(τ)=
√
ε

[
xk−1+

τ−tk−1

ε
(xk−xk−1)

]
for tk−1<τ<tk,


q(0)=

√
εx0≡qi,

q(tk)=
√
εxk

q(t)=
√
εxn≡qf ,

With this change of variable for τ 6= ε, 2ε, 3ε, . . .

d q(τ)

d τ

∣∣∣∣
τ∈(tk−1,tk)

=
xk − xk−1

ε
.

As a result

S(x) =
ε

2σ2

n−1∑
k=0

(
d q(τ)

d τ

∣∣∣∣
τ∈(tk−1,tk)

)2

ε→0−−−→ 1

2σ2

t∫
0

q̇2(τ) d τ ≡ S[q(t)]

We have transformed now the argument of the exponent in a functional depending
on the function q(t). The integral has to be performed on all possible functions q(t)
and we formally write

n−1∏
k=1

[∫
dxk

]
ε→0−−−→

q(t)=qf∫
q(0)=qi

D[q(t)]

and our integral becomes

Z[qf |qi] =

q(t)=qf∫
q(0)=qi

D[q(t)] e−S[q(t)]

This is a general structure that appears when studying measures over paths. In
particular, integrals take the form

Z[qf |qi] =

q(t)=qf∫
q(0)=qi

D[q(t)] e−S[q(t)]

where S[q] is called action of the system. The notion of action is descends from
the Lagrangian formalism and it is defined as

S[q(t)] =

t∫
0

L(q(t), q̇(t)) d t

where the argument of the integration L(q(t), q̇(t)) is the Lagrangian of the system,
in general a function of q(t) and its time derivatives that contains information on the
dynamics of the system: in the case of the walker described above, the Lagrangian

was L(q̇(t)) = q̇2

2σ2 . As S[q(t)] is a functional, the integration over q(t) is referred
to as functional integration: D[q(t)] is meant as the integration over all space of
functions q(t). D[q(t)] is just a formal notation, as more precisely this integration
must be intended with a discretized time, in order to retrieve the analogy with
ordinary integration, thus a continuous trajectory of evolution xi(t) must thought
as given by a series of points each one corresponding to a discrete time step: the
final results are then transformed again into continuous time. Path integrals are
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an alternative formulation of Statistical Mechanics that turn out to be particularly
convenient for some calculations in dynamical problems.

As a counterpart of functional integration, one can define a functional deriva-
tion

δS[q(t)]

δq(τ)

that gives the infinitesimal variation of S that follows from an infinitesimal variation
of the trajectory q(t) → q(t) + δq at time τ . To be more precise, the functional
derivative of S is defined via an integral, i.e., given an arbitrary function φ(t),
δS[q(t)]
δq(τ) is the function such that∫

δS[q(t)]

δq(τ)
φ(τ) d τ = lim

ε→0

S[q(t) + εφ(t)]− S[q(t)]

ε
≡ dS[q(t) + εφ(t)]

d ε

∣∣∣∣
ε=0

It is easy to check that this implies that, if for example S[q(t)] = q(t), then

δq(t)

δq(τ)
= δ(t− τ).

Similarly, δqn(t)
δq(τ) = nqn−1(τ)δ(t − τ), and so on. Finally, if S[q(t)] =

∫ t
0
qα(τ) d τ ,

then

δS[q(t)]

δq(τ)
=

t∫
0

δqα(t′)

δq(τ)
d t′ = α

t∫
0

qα−1(t′)δ(t′ − τ) d t′ = αqα−1(τ).

The principle of least action states that the classical trajectory is the one that
makes the action stationary, i.e., the trajectory solving the equation

δS[q(t)]

δq(τ)
= 0.

This is equivalent to say that the classical trajectory is the one that gives the largest
contribution to the partition function Z

As the partition function can be expressed as a path integral, so do the n-points
correlation functions,

E[q(t1) . . . q(tn)] =
1

Z

∫
D[q(t)]q(t1) . . . q(tn) e−S[q(t)]

In analogy with moment generating function one can introduce moment generating
functionals

Z[J ] =

∫
D[q(t)] e−S[q(t)]+

∫ t
0
J(τ)q(τ) d τ

that generates all the moments by functional derivation

E[q(t1) . . . q(tn)] =
1

Z[J ]

δ

δJ(t1)
. . .

δ

δJ(tn)
Z[J ]

∣∣∣∣
J=0

Exercises

(1) The Wiener-Lévy process was originally introduced to describe the be-
haviour of the position of a free Brownian particle in one dimension. On
the other hand, it plays a central role in the rigorous foundation of the
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stochastic differential equations and occurs often in applied mathematics,
physics and economics. The Wiener-Lévy process is defined through

P1|1 (x2, t2|x1, t1) =
1√

2π (t2 − t1)
exp

{
− (x1 − x2)

2

2 (t2 − t1)

}
.

with t2 > t1 > 0 and condition P1 (x1, 0) = δ(x1).
(a) Show that the probability density for t1 > 0 is

P1 (x1, t1) =
1√

2πt1
exp

(
− x

2
1

2t1

)
,

and prove that P1(x, t) satisfies the diffusion equation

∂P1(x, t)

∂t
=

1

2

∂2P1(x, t)

∂x2
.

This is a non-stationary.
(b) Show that

〈x (t1)〉 = 0, 〈x (t1)x (t2)〉 = min (t1, t2) .

(2) The Ornstein-Uhlenbeck (OU) process was constructed to describe the
behaviour of the velocity of a free Brownian particle in one dimension.
It also describes the position of an over damped particle in a harmonic
potential. It is defined by (τ > 0)

P1(x) =
1√
2π

exp

(
−x

2

2

)
,

P1|1 (x2, t+ τ |x1, t) =
1√

2π (1− e−2τ )
exp

{
− (x2 − x1 e−τ )

2

2 (1− e−2τ )

}
.

The OU process is stationary, Gaussian and Markovian. According to
Doob’s theorem, it is essentially the only process with these three prop-
erties.
(a) The Gaussian property is clear for P1. By using P2 (x2, t2;x1t1) =

P1(x1)P1|1 (x2, t2|x1, t1) show that P2 (x2, t2;x1t1) can be identified
with a bivariate Gaussian distribution.

(3) Show that the OU process has an exponential autocorrelation function

〈x (t+ τ)x (t)〉 = e−τ .

The evolution with time of the velocity correlation has a clear meaning.
For short time differences the velocity of the Brownian particle is strongly
correlated with itself. As time elapses, the velocity looses all memory of
its value at the initial time due to the collisions and hence P2 (x2, t2;x1t1)
is completely uncorrelated.

(4) Explain why the Chapman-Kolmogorov equation does not hold for non-
Markovian processes.

(5) Calculate KL divergence between the distributions of possible outcomes
for M throws of fair (probability of head is 1/2) and unfair (probability of
head is 1/3) coins.



LECTURE 6

Methods for ODEs and PDEs

In this chapter we will discuss some methods for the solution of ordinary dif-
ferential equations (ODEs). To do so, we will first start reviewing some results
about dynamical systems, and then solve the associated differential equations. In
the second part of the lecture we will give a brief introduction to PDEs and their
classification, and we will discuss some methods of solving them.

1. Dynamical systems

Dynamical systems (DS) are systems described by a n-dimensional, time de-
pendent vector x(t), governed by dynamical laws given in terms of an ODE in the
form

ẋ = f(x, t)

The function f is a velocity field for the dynamical system. The dynamical system
is also said to be of order n. If time t does not explicitly appear in the velocity
function f , the system is said to be autonomous, otherwise it is non-autonomous.
Thus for autonomous systems, we have ẋ = f(x). Note that every non-autonomous
DS can be considered as an autonomous one, by introducing new “coordinate” s
such that the resulting DS is of order n+ 1 with d t

d s = 1.

Definition 1.1. The set of points {x(t), t ∈ R} which solve ẋ = f(x, t), and
for which x (t0) = x0 is called the orbit of the DS passing through x0. The set of all
orbits obtained by varying t0 and x0 through all physically allowed values is called
the phase-flow of the DS.

Definition 1.2. The set of pairs (t,x(t))t which solve the ODEs, and for which
x (t0) = x0 is called the trajectory or solution curve of the DS passing through x0.
The set of all trajectories obtained by varying t0 and x0 through all physically
allowed values is called the flow of the DS.

Note the difference between phase-flow and flow; the latter contains more dy-
namical information than the former.


 Example Suppose that we have the dynamical system for x ∈ R2

ẋ = f(t), f(t) =

(
− sin t
cos t

)
, x(0) =

(
1
0

)
⇒ x(t) =

(
cos t
sin t

)
.

Then we can draw the orbit (on the left) and the trajectory (on the right):

75
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Definition 1.3. A graphical representation of the the phase space, including
a graph of the velocity function f and a graph of the phase flow, including velocity
information, i.e., with f(x) drawn at representative points x in phase space, is
called phase portrait of the system (also referred to as phase diagram). The vector
f(x) is called velocity of the flow (at x).

Definition 1.4. A point a is called a fixed point of an autonomous DS if

f (a) = 0.

A system which is at a fixed point will stay there forever, unless perturbed.

Definition 1.5. Let a be a fixed point of a DS

• A fixed point a of a DS is called strongly stable, if all trajectories starting
(sufficiently) close to a will approach a under the dynamics.

• A fixed point a of a DS is called unstable, if there exist trajectories starting
close to a which will evolve away from a under the dynamics. (Note that in
n-th order DS, mixed situations exist, i.e. some subset of the trajectories
starting sufficiently close to a will approach a, whereas there exist others
which will evolve away from a, no matter how close to a they start.)

• A fixed point a of a DS is called (marginally) stable, if all trajectories
starting (sufficiently) close to a will neither approach a under the dynam-
ics, nor will they evolve away from it, but rather ‘keep circling around’.

1.1. Connection to nth order ODE. The general nth order differential
equation has the form

F
(
∂nt x(t), ∂n−1

t x(t), . . . , ∂tx(t), x(t), t
)

= 0,

for some function F : Rn+2 → R. Assume that this can be can be rewritten as

∂nt x(t) = G
(
∂n−1
t x(t), . . . , ∂tx(t), x(t), t

)
,

for some function G : Rn+1 → R. Then introducing y(t) ∈ Rn we can write an
equivalent nth order DS 

ẏ1 = y2,

ẏ2 = y3,
...

ẏn = G (yn, yn−1, . . . , y1, t) .

A valuable tool for the study of first order DS is the so-called phase portrait. It is a
geometric representation of the trajectories in the phase space, i.e., the space of all
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systems configurations. In the phase portrait, each curve corresponds to an initial
condition. They immediately provide evidences of the presence of attractors (i.e.,
stable points), repellors (i.e., unstable points) or limit cycles.


 Example The simple pendulum satisfies the following equation

θ̈ = −g
`

sin θ ⇔

{
ẏ1 = y2,

ẏ2 = − g
`

sin y1.

The system is therefore described by a two dimensional vector y ∈ R2, such that y1 = θ
and y2 = θ̇: its phase portrait is a 2-dimensional diagram, where each curve corresponds
to a given initial condition. It appears clearly that θ = θ̇ = 0 is a stable point, θ = ±π
with θ̇ = 0 are unstable points, and there are no limit cycles (i.e., cycles attracting nearby
trajectories for t→ +∞).

`
θ

-3 -2 -1 0 1 2 3
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-2
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1.2. First Order DS. A first order autonomous dynamical system is de-
scribed by a differential equation of the form

dx

d t
= f(x), x ∈ R f : R→ R

If we want to solve for the evolution of the system, it depends solely on the initial
value x of the state variable describing the system under consideration. The phase
space is given by the set of admissible values for x. For example, if x is the chemical
concentration of a substance, the allowed values of x are such that x > 0.

Phase portrait can now be thought as a plot of f(x), plot of corresponding
vector field on X-axis and a plot of phase flow. It is also of a big importance to
distinguish regions of positivity and negativity of f(x). This is clearly seen from
the following observation: if f(x) > 0, then x increases as function of t, while if
f(x) < 0 then x decreases as function of t.


 Example Let us consider DS defined by

ẋ = sinx.

Then the phase space is just the real line:
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−5π −4π −3π −2π −1π 0π 1π 2π 3π 4π 5π

One can see that there are infinitely many stationary points given by ak = πk, k ∈ Z.
The dynamics tries to push the particle out of points a2k towards points a2k−1 or a2k+1.
This suggests that point a2k are unstable, while a2k+1 are stable. The phase space is
divided now into regions of positivity for f(x), negativity and stationary points. If initial
position x(0) is in the region of positivity, then the particle moves to the right, according
to a vector field v = f(x), until it reaches close neighbourhood of a stable point. This
stable point will be a barrier for a particle as it can’t cross it.

1.2.1. Linear stability of a fixed point. Let us focus now on the stability proper-
ties of fixed points in first order DS. The stability analysis based on (and requiring
only) Taylor series expansions to first order is referred to as linear stability analysis
of a fixed point. Corresponding fixed points are called linearly stable or unstable.
If f(x) is suitably differentiable, we can approximate f(x) by its Taylor expansion
around a fixed point x = a

f(x) = f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + . . . being f(a) = 0.

Let us assume that f ′(a) 6= 0; then for |x − a| � 1 one can approximate the
differential equation describing the evolution of the system as

ẋ ' f ′(a)(x− a)→ d(x− a)

d t
' f ′(a)(x− a)⇒ (x− a) ∼ (x0 − a) ef

′(a)t.

Here we have assumed our initial position to be x0 ∈ Ḃ (a, ε). We can see that

• If f ′(a) > 0, |x− a| increases exponentially in time and we say that a is
a linearly unstable fixed point.

• If f ′(a) < 0, |x− a| decreases exponentially in time and we say that a is
a linearly stable fixed point.


 Example In the DS ẋ = sinx, for a fixed point ak = πk we have f ′ (ak) = cos (πk) =

(−1)k. Therefore, points a2k+1 are linearly stable, and a2k are linearly unstable.

Note that the approximate solution of the ODEs describing the DS near fixed
points based on Taylor series expansions is valid only in the vicinity of fixed points.
The quality of the approximate description will therefore improve, if a fixed point is
approached under the dynamics, whereas the approximate description deteriorates,
if the system moves away from a fixed point.

1.3. Second Order DS. A second order autonomous dynamical system is
described by differential equations of the form{

d x1

d t = f1 (x1, x2) ,
d x2

d t = f2 (x1, x2) .

or in vector form
dx

d t
=

d

d t

(
x1

x2

)
= f(x) =

(
f1(x)
f2(x)

)
.

The phase space Γ is defined as the set of admissible values for x. The pair (x1, x2)
denotes a point in R2, so generally Γ ⊆ R2. For some systems, Γ may be a
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proper subset of R2. A point a ∈ R2 is a fixed point of the dynamical system, iff
f1(a) = f2(a) = 0.

Definition 1.6. The set of points a ∈ R2 for which f1(a) = 0 is called null-
cline of f1. Similarly, the set of points a ∈ R2 for which f2(a) = 0 is called
null-cline of f2

On a null-cline of f1, the x-component of the velocity vanishes; similarly, on a
null-cline of f2, it is the y-component of the velocity which is zero. Fixed points are
intersections of the null-clines of f1 and f2. The defining equation of the null-cline,
f1(a) = 0 generally defines a curve in R2.

1.3.1. Stability of a fixed point. The stability problem for second order au-
tonomous systems is likely to be more complicated than for first order systems; the
extra dimension allows more possibilities.

Definition 1.7. We say that the fixed point a is an attractor for a particular
DS if x(t)→ a as t→∞. We say that a fixed point a is strongly stable if it is an
attractor for all phase curves which enter some neighbourhood of a.

This conveys the notion that all phase curves which pass sufficiently close to a
are “sucked in” to a as t→∞. The following definition provides a weaker concept
of stability.

Definition 1.8. We say that a fixed point a is stable if for every neighbourhood
N1 of a there exists a neighbourhood N2 of a, N2 ⊆ N1, such that x(0) ∈ N2 ⇒
x(t) ∈ N1 for all t ≥ 0.

Roughly speaking this definition says that if a is a stable fixed point then any
motion of the system which starts close enough to a remains close to a. Notice
that this definition does not require that the system tends to a as t → ∞. If a is
strongly stable then it is stable, but the converse is not true.


 Example Let us consider 2nd order DS defined by{
d y1
d t

= y2,
d y2
d t

= − sin y1

corresponding to the simple pendulum, as we already saw. However, we just want to
comment its phase portrait at page 77 and analyse it qualitatively. First we find null-
clines: for f1 it is the line y2 = θ̇ = 0, for f2 there are infinitely many lines y1 = θ = πk.
Corresponding fixed points are ak = (πk, 0). From the sketch of vector field we can see
that if the particle in the upper half plane, then it moves to the right, until (if this happens)
it reaches the null-cline for f1. If it crosses the null-cline, then it starts to go to the left,
and so on. It can also be seen from the picture (and can be analytically calculated), that
points ak are stable (but not strongly stable) for even indexes and unstable otherwise.

1.4. Separable systems. In second order dynamical systems the dynamical
evolutions of the variables x1 and x2 are quite generally coupled: both velocity
functions depend on x1 and x2. Sometimes it is possible to change variables from
(x1, x2) to new variables (y1, y2) in such a way that the differential equations de-
scribing the system take the form{

ẏ1 = v1(y1),

ẏ2 = v2(y2).
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In this case we say that the system is separable in the variables (y1, y2): the second
order system has been decoupled into two first order systems described by the first
order differential equations ẏ1 = v1(y1) and ẏ2 = v2(y2) respectively.


 Example Let us consider 2nd order DS defined by{
ẋ1 = x1 + x2 − x3

2 − x1x
2
2,

ẋ2 = −x1 + x2 − x2
1x2 − x3

2.

We introduce polar coordinates (r(t), θ(t)) by putting x1 = r cos θ and x2 = r sin θ. After
some algebraic manipulations, {

ṙ = r − r3,

θ̇ = −1.

We managed to transform 2nd order DS to a couple of the first order DS. The second one
is simple and means that we are rotating in clockwise direction with constant speed. For
the first system we can draw it own phase portrait:

0.5 1 1.5 2
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fr(r)

Starting from any positive value of r we end up with r = 1 in a limit t → ∞. It can be
shown analytically that the system will reach value r = 1 in a finite time. After reaching
this fixed point r will stay unchanged, while θ will change. And we conclude that our
two-dimensional system, starting from any point except the origin, will be “sucked” in a
finite time by unit circle, which is a limit cycle. After that time the particle will be moving
around the origin with period 2π. In the original parametrisation, the phase portrait is
the following (in red, a sample trajectory approaching the attractor):
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1.5. Linear Second order DS. Unlikely to one-dimensional case, the linear
stability analysis in the case of second order DS is less straightforward. Therefore
we start first with the linear case and then proceed with the discussion of linear
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stability analysis. General form of a linear system is given by

ẋ = Ax,

where A is a constant matrix. The only fixed point of the system is x = 0 and we
analyse its stability below. We consider real matrices A. Such matrix can always
be decomposed in a Jordan normal form,

A = PJP−1, J =

(
λ1 0
0 λ2

)
or J =

(
λ 1
0 λ

)
with P invertible matrix. Therefore there are two possible cases (we suppose that
we impose x(0) = x0):

(1) Let us consider the first case, J =
(
λ1 0
0 λ2

)
. If A has two distinct real

eigenvalues λ1 < λ2, then there also exist two linearly independent eigen-
vectors v1 and v2 corresponding to λ1 and λ2 respectively, and the general
solution of the system is given by

x(t) = C1 eλ1t v1 + C2 eλ2t v2,

where C1, C2 are some constants to be determined by initial conditions
x(0) = C1v1 + C2v2 = x0. One can now see that
• if λ1 < λ2 < 0, then x(t) → 0 as t → ∞, and 0 is a strongly stable

point.
• if λ2 = 0, then x(t)→ C2v2, as t→∞. C2 is bounded by C‖x0‖, for

some constant C. And therefore, 0 is a stable fixed point, because
‖x(t)‖ ≤ C‖v2‖‖x0‖.
• if λ2 > 0, then x(t)→∞ and point 0 is unstable.

If λ1 = λ2 = λ, A is diagonal with λs on a diagonal, being A =
λPI2P

−1 = λI2. Then solution is given by

x(t) = eλt u,

for some constant vector u. And
• 0 is a strongly stable fixed point if λ < 0.
• 0 is a stable fixed point if λ = 0.
• 0 is an unstable fixed point if λ > 0.

(2) Let us consider the second case, J =
(
λ 1
0 λ

)
. ThenA has eigenvalues λ± =

µ± iν with µ, ν real. It also exists a complex eigenvector v corresponding
to λ+ (with v corresponding to λ−) and the general solution of the system
is given by

x(t) =

{
eµt
(
C1 eiνt v + C2 e−iνt v

)
, if ν 6= 0

eµt (C1 + C2t)v, if ν = 0,

where C1 and C2 are determined by initial conditions. One can now see
that
• if µ < 0, then x(t)→ 0 as t→∞, and 0 is a strongly stable point.
• if µ = 0, then the particle moves along the elliptic orbit around the

origin and therefore, 0 is a stable fixed point, sometimes called elliptic
fixed point.
• if µ > 0, then x(t)→∞ and point 0 is unstable.
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1.6. Linear stability analysis for the second order DS. Given a fixed
point a, we want to investigate the stability of a fixed point by first Taylor-
expanding about a

f1(x) = f1(a) +
∂f1(a)

∂x1
(x1 − a1) +

∂f1(a)

∂x2
(x2 − a2) + o

(
‖x− a‖2

)
,

f2(x) = f2(a) +
∂f2(a)

∂x1
(x1 − a1) +

∂f2(a)

∂x2
(x2 − a2) + o

(
‖x− a‖2

)
.

Thus, to the first order in ‖x− a‖ one can approximate DS in this vectorial form

d

d t
(x− a) = Jf (x− a),

where Jf is the Jacobian matrix of the system about a (note that the partial
derivatives are evaluated at x = a) and given by

Jf =

(
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

)
.

Linear stability can now be analysed using linear model discussed above. As we
have already seen in the linear models, stability is determined by the eigenvalues
of Jf . They are given by

λ± =
trJf ±

√
tr2 Jf − 4 detJf

2
.


 Example Let us consider DS defined by{
d x1
d t

= x2 − x2
1 + 2,

d x2
d t

= 2
(
x2

1 − x2
2

)
.

and study linear stability for its fixed points. Fixed points are found by solving{
x2 − x2

1 + 2 = 0,

x2
1 − x2

2 = 0.

There are four of them a1 = (2, 2), a2 = (−2, 2), a3 = (1,−1), a4 = (−1,−1). The
Jacobian of DS is given by

J =

(
−2x 1
4x −4y

)
.

(1) Fixed point a1 is linearly stable as we have

J =

(
−4 1
8 −8

)
, λ± = −6± 2

√
3 < 0.

(2) Fixed point a2 is linearly unstable as we have

J =

(
4 1
−8 −8

)
, λ− = −2− 2

√
7 < 0 and λ+ = −2 + 2

√
7 > 0.

(3) Fixed point a3 is linearly unstable as we have

J =

(
−2 1
4 4

)
, λ1 = 1−

√
13 < 0 and λ2 = 1 +

√
13 > 0.
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(4) Fixed point a4 is linearly unstable as we have

J =

(
2 1
−4 4

)
, λ1 = 3− i

√
3 and λ2 = 3− i

√
3, with <λ1 > 0.

2. Methods of solving ODEs

In this section we give a short list of ODEs, which can be solved explicitly.
Explicit equations are those which can be solved by direct explicit integration; they
are of the form

dx

d t
= f(t),

so that the r.h.s. does not depend on the unknown function x; thus explicit first
order equations are not strictly ODEs. Integrating w.r.t. time t one obtains

x(t) = F (t) + C,

with F (t) + C denoting the indefinite integral of the function f . The constant C,
may be fixed by inserting an initial condition, giving x (t0) = x0 = F (t0) + C,
hence C = x0 − F (t0), and x(t) = x0 + F (t) − F (t0). Our goal will be to reduce
to this form more complicated ODEs.

2.1. First order separable ODE. Equations of the type

dx

d t
= f(t)g(x),

can be integrated formally by separation of variables:

dx

g(x)
= f(t) d t⇒

∫
dx

g(x)
=

∫
f(t) d t.

Denoting the indefinite integrals involved by G(x) + c1 =
∫

d x
g(x) and F (t) + c2 =∫

f(t) d t, combining the two integration constants into one, one obtains

G(x) = F (t) + C,

which – on (formally) solving for x – gives

x = G−1 (F (t) + C) ,

with arbitrary C as the general solution. The constant C can be fixed by inserting
an initial condition, giving C = G (x0)− F (t0).


 Example Consider the ODE
dx

d t
= αx,

where α is a constant. This equation arises frequently in our work, see e.g., linear approx-
imation for DS. We have

dx

x
= d t⇒ lnx = αt+ C,

and thus
x(t) = C eαt .
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2.2. First order linear ODE. First order, linear equations are of the form

dx(t)

d t
+ f(t)x(t) = g(t), x(t0) = x0,

with f and g given functions of t. Equations of this form are solved using the method
of integrating factors. Let us first solve a homogeneous version with g(t) = 0, i.e.

dxh(t)

d t
+ f(t)xh(t) = 0.

This is solved by separating variables and solution is given by

xh(t) = C e−F (t), F (t) =

t∫
t0

f(s) d s,

where F (t) is anti-derivative of f(t) and C is a constant. To obtain a solution of
non-homogeneous equation we will use the ansatz xih(t) = h(t) e−F (t), searching
for a proper h(t). Substituting expression for xih(t) into original ODE and taking
into account properties of xh(t) we obtain

e−F (t) dh(t)

d t
= g(t),

which can be solved by explicit integration as

h(t) =

∫
g(t) eF (t) d t.

Combining the above with initial conditions one gets

x(t) = x0 e−F (t) + e−F (t)

t∫
t0

g (τ) eF (τ) d τ.


 Example Consider the ODE for t > 0

t (t+ 1)
dx

d t
− (t+ 2)x = t3 (2t− 3) , x(1) = x0.

The homogeneous version of the equation reads

dxh

xh
=

(t+ 2)

t (t+ 1)
,

and is solved by

lnxh =

∫ (
2

t
− 1

t+ 1

)
d t = ln

t2

t+ 1
+ c0 ⇒ xh(t) =

Ct2

t+ 1
.

Now let xih(t) = t2

t+1
h(t), then

t2

t+ 1

dh(t)

d t
= t3 (2t− 3) .

Integrating the last equation we obtain

h(t) =

t∫
1

s (s+ 1) (2s− 3) d s =
4

3
+

1

2
t4 − 1

3
t3 − 3

2
t2,
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and thus

x(t) =
t2

t+ 1

(
1

2
t4 − 1

3
t3 − 3

2
t2 + 2x0

)
.

2.3. First order homogeneous ODE. Consider the equation

dx

d t
=
P (t, x)

Q (t, x)
,

where P and Q are homogeneous functions of (the same) degree m, meaning that
that

P (t, λt) = tmP (1, λ) and Q (t, λt) = tmQ (1, λ) ,

for some m. The general solution of the ODE may be found by making the substi-
tution x = tv(t) where v has to be determined. We have

t
d v

d t
+ v =

P (1, v)

Q (1, v)
⇔ t

d v

d t
= R (v) ,

where R (v) = P (1,v)
Q(1,v) − v and the last equation is an ODE with separable variables

and can be solved by using the standard technique.


 Example Consider the ODE

dx

d t
=
x2 − t2

2xt
.

Changing variables with x = tv(t) one gets

tv̇ + v =
v2 − 1

2v
,

and after separation of variables we obtain

− 2v d v

1 + v2
=

d t

t
.

Integrating last identity we get, for t > 0

− ln
(
1 + v2) = ln t+ C.

A solution for the initial ODE is now given by

x2 + t2 = Ct,

for some constant C.

2.4. Second order linear, with constant coefficients. Second order linear
ODEs with constant coefficients are of the form

a
d2 x(t)

d t2
+ b

dx(t)

d t
+ cx(t) = f(t),

where a, b, c are constants and f(t) is a given function of time. As before, we will
first try to solve homogeneous equation and then using method of varying constants
we solve inhomogeneous one.
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2.4.1. The homogeneous case. We will first consider the special case of homo-
geneous equations

a
d2 x(t)

d t2
+ b

dx(t)

d t
+ cx(t) = 0.

Linear and homogeneous ODEs have important properties:

(1) a solution x(t) can be multiplied with an arbitrary constant, and remains
a solution;

(2) for any pair x1 and x2 of independent solutions (which are not proportional
to each other), any linear combination of the solutions x1 and x2 with
arbitrary constant coefficients is also a solution of the equation

The homogeneous equation is solved with the help of auxiliary polynomials. This
method is based on the observation that the equation is solved by functions of the
form

x(t) = eλt,

provided λ is properly chosen. The condition on λ is obtained by inserting the
exponential ansatz into equation. One gets(

aλ2 + bλ+ c
)

eλt = 0.

Since eλt 6= 0, we see that eλt is a solution of equation provided

P (λ) = aλ2 + bλ+ c = 0,

which is the auxiliary equation for the auxiliary polynomial P . We consider below
only the case of real coefficients (straightforwardly extended to the complex case).
The auxiliary equation is a quadratic equation in λ and as such there are three
possibilities:

(1) There are two distinct real solutions λ1, λ2. It follows that x1(t) = eλ1t

and x1(t) = eλ1t are independent solutions of the given differential equa-
tion. The general solution of initial homogeneous ODE is now obtained
by forming an arbitrary linear combination of these two solutions: it is

x(t) = C1 eλ1t +C2 eλ2t,

where C1, C2 are parameters. One can also show that these combinations
exhaust the set of possibilities (i.e. there are no solutions of a form other
than a linear combination of two exponents).

(2) The auxiliary equation has two complex conjugate roots λ± = µ ± iν.
This means that

x±(t) = eµt±iνt = eµt (cos νt+ i sin νt) ,

are solutions of the ODE, as are all linear combinations thereof. Forming
linear combinations of these, we see that the general solution is given by

x(t) = C1 eµt cos νt+ C2 eµt sin νt.

Here C1, C2 are parameters free to choose and can be fixed by initial
conditions.

(3) The third possibility is that auxiliary equation has two coincident real
roots, λ1,2 = λ, say. In this case we know that

x1(t) = C eλt,
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is a solution, where C is an arbitrary constant. An independent solution
is in this case obtained by the method of varying constants. That is one
tries to find an independent solution of the form

x2(t) = h(t)x1(t),

in which the constant C above is replaced by an as yet unknown function
h. The function h is determined by inserting this ansatz into ODE, which
gives [

aḧ+ (2aλ+ b) ḣ+
(
aλ2 + bλ+ c

)
h
]

eλt = 0,

As the coefficient of h in this equation is P (λ) and thus vanishes, and the

coefficient of ḣ vanishes because λ = − b
2a was assumed to be the unique

solution of P (λ) = 0, we are left with the condition

ḧ = 0,

which gives linear in t solution. Forming linear combinations of x1 and
x2, we see that the general solution of it is given by

x(t) = (C1 + C2t) eλt,

where as usual C1 and C2 are parameters free to choose and can be fixed
by initial conditions.

2.4.2. Inhomogeneous. We now consider the inhomogeneous ODE with f(t) 6=
0. The first thing to note is the following: suppose xih(t) is any particular solution
of the inhomogeneous equation. Then a solution of the form

x(t) = xih(t) + xh(t),

with xh(t) a general solution of the corresponding homogeneous equation is also
a solution of the inhomogeneous equation, and this exhausts the possibilities, i.e.
there is no solution of the inhomogeneous equation which is not of this form. We
already know how to find the xh(t). So it is sufficient to find a special solution of the
inhomogeneous equation. A particular solution of an inhomogeneous equation can
be found by the method of varying constants from a solution x(t) = C1 eλt of the
homogeneous equation. Thus we attempt a solution xih(t) of the inhomogeneous
equation of the form

xih(t) = h(t) eλt,

with an unknown function F to be determined by inserting the ansatz into ODE.
Following the reasoning in case (iii) above, this gives

aḧ+ (2aλ+ b) ḣ = f(t) e−λt .

This ODE for h does only involve first and second order derivatives of h and not
the function h itself. This can be used to reduce the order of the ODE. Setting
ψ(t) = ḣ(t), one obtains

aψ̇ + (2aλ+ b)ψ = f(t) e−λt .

This is a first order linear equation and we know how to solve it using integrating
factors. Once ψ(t) is obtained along those lines, h(t) follows by a further integration
w.r.t. time t, thus finally allowing to write down

xih(t) = h(t) eλt .
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Occasionally one can be lucky to find a special solution faster by using inspired
guesswork as in the following


 Example Find the solution of the differential equation

ẍ+ 9x = t,

subject to the initial conditions x(0) = 0, d x
d t

(0) = 0. The homogeneous equation corre-
sponding to ODE is

ẍh + 9xh = 0.

The corresponding auxiliary equation (obtained by substituting the trial solution eλt) is

λ2 + 9 = 0,

with solution λ = ±3i. It follows that the general solution of homogeneous equation is

xh(t) = C1 cos 3t+ C2 sin 3t,

where C1,2 are parameters. A particular solution of equation inhomogeneous equation is
clearly xih(t) = t/9, as follows by inspection. We conclude that the general solution of
initial ODE is

x(t) =
t

9
+ C1 cos 3t+ C2 sin 3t.

where C1,2 are parameters. We now pick the solution which satisfies the initial conditions.
Imposing the conditions x(0) = 0, we obtain C1 = 0, and imposing d x

d t
(0) = 0 then gives

C2 = − 1
27

. The required solution is therefore

x(t) =
3t− sin 3t

27
.

2.5. Using Fourier Transform to solve ODEs. A very important strategy
to solve higher order ODEs is the use of Fourier transform. Let

L =

n∑
k=0

ak
dk

d tk

be a linear differential operator of order n with constant coefficients. We consider
a linear ODE of the form

L [x] (t) =

n∑
k=0

ak
dk x(t)

d tk
= f(t).

Taking Fourier transform of both sides, and using Theorem 2.5 we obtain

P (ω)F [x] (ω) = F [f ] (ω) ,

where P (ω) =
∑n
k=0 ak (−iω)

k
is a polynomial of degree n. The function x(t) now

can be found by inverting Fourier transform and is equal to

x(t) =
1

2π

∫
F [f ] (ω)

P (ω)
e−iωt dω.

Fourier transform method can be applied to some equations with non-constant
coefficients as well.

3. Partial differential equations

Studying the temporal evolution of a system almost always implies the solution
of a differential equation in time, as we have seen for ODEs. When the variation
is taken also with respect to other variables (i.e. space) then one has to deal
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with partial differential equations (PDEs). Loosely speaking, a PDE is a relation
involving a function u of several real variables x1, . . . , xn with its partial derivatives

∂u

∂xj
,

∂2u

∂xj∂xk
,

∂3u

∂xj∂xk∂xl
, . . . .

Every PDE can be written as

F

(
x,

∂u

∂xj
,

∂2u

∂xj∂xk
, . . .

)
= 0,

where F is some function in multiple variables. General PDE can be rewritten by
using multi index formalism.

Definition 3.1. We call α = (k1, k2, . . . , km) a multi index of order |α| =∑m
j=1 kj. We introduce the notation

∂αu =
∂ku

∂xk1
1 ∂x

k2
2 . . . xkmm

.

Finally, we denote the set of all partial derivatives operators of order k by Dk :=
{∂α : |α| = k}.

Definition 3.2. We say that that the PDE is of order k if the highest derivative
order of u it contains is k.

Let us consider now PDEs in the form

L[u]u(x) = f(x)

where

L[u] =

k∑
j=0

∑
α : |α|=j

aα(x, u,D1u, . . . ,Dju)∂α.

Definition 3.3. We say that a PDE is linear if the operator L has the form

L =

k∑
j=0

∑
|α|=j

aα(x)∂α.

We say that a PDE is semilinear if L has aα ≡ aα(x) for |α| = k. The PDE is
said to be quasilinear if aα does not depend on derivatives of order |α|. Finally, the
PDE is homogeneous if f(x) = 0, and it is said to be inhomogeneous otherwise.

If the PDE is linear and inhomogeneous and uih is its solution, then general
solution of the PDE can be written as u = uih + uh, where uh is a general solution
of corresponding homogeneous equation (with f ≡ 0).

We list here some important equations appearing in physics and applications.
Due to the fact that a natural source for PDEs is dynamics of some physical systems
we denote one of the variables as t representing “time”.

� Transport equation: ∂tu+ c∂xu = 0 is a linear, homogeneous PDE of the
first order.

� Burger’s equation: ∂tu+ u∂xu = 0 is a quasilinear, homogeneous PDE of
the first order.
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� Eikonal equation:
∑n
j=1

∣∣∂xju∣∣2 = 1
f(x) is a non-linear, inhomogeneous

PDE of the first order.

� Hamilton-Jacobi equation: ∂tu + H (x, u,∇u) = 0 is a first order PDE,
that is usually non-linear, inhomogeneous PDE depending on the Hamiltonian
H.

� Korteweg–de Vries equation: ∂tu + (∂xu)
3 − 6u∂xu = 0 is a non-linear,

homogeneous PDE of the first order.

� Laplace equation: ∆u = 0 is a linear, homogeneous PDE of the second
order.

� Helmholtz equation: ∆u = −λu is a linear, homogeneous PDE of the
second order.

� Wave equation: ∂2
t u − c2∆u = 0 is a linear, homogeneous PDE of the

second order.

� Heat equation: ∂tu−c2∆u = 0 is a linear, homogeneous PDE of the second
order.

� Schrödinger equation: i∂tu−∆u = 0 is a linear, homogeneous PDE of the
second order.

� Fokker–Planck equation: ∂tu = − ∂
∂x [µ (t, x)u] + ∂2

∂x2 [D (t, x)u], is a lin-
ear, homogeneous PDE of the second order.

In general case a PDE is not uniquely solvable and fort his purpose has to
be equipped with some boundary conditions on some domain Ω. There are three
standard types of boundary conditions one can specify:

Dirichlet boundary conditions: The value of a function u is specified on
the boundary of Ω.

Neumann boundary conditions: The value of normal derivative for func-
tion u is specified on the boundary of Ω.

Cauchy boundary conditions: A mix of Dirichlet and Neumann bound-
ary conditions are specified for function u on the boundary of Ω.

If the boundary conditions are specified we say that we solve a boundary value
problem for the PDE. If one of the variables represents time t, then one can give as
boundary condition the initial condition, and in this case we solve an initial value
problem.

4. Methods of solving PDEs

4.1. Method of characteristics. The method of characteristics is a method
for solving linear, semilinear or quasilinear PDEs of the first order, i.e., equations
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in the form

(19)

d∑
j=1

aj (x, u)
∂u

∂xj
= f (x, u) ,

where aj and f are some known functions of d + 1 variables. The main goal
of the method is to find special curves, called characteristics, along which the
PDE becomes a family of ODE. Once the ODEs are found and solved along the
characteristics curves they can be related to the solution of original PDE. The
rational of this idea comes from the observation that we can imagine the solution
s(x, u) := u(x)− u = 0 to be a hypersurface S ⊂ Rd+1.

x1

x2

u = u(x)

u(0, x2)

Initial condition

x(s)

Characteristics

v

τ

X

Given a point (x, u(x)) of this surface, the vector

τ :=

(
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xd
,−1

)
≡ (∇u,−1)

is orthogonal to S in x. On the other hand, Eq. (19) says that the vector v =
(a1(x, u), . . . , ad(x, u), f(x, u)) is orthogonal to the vector τ : indeed, the equation
can be written as 〈v, τ 〉 = 0. This means that v is tangent to S, and the surface
S can be thought as union of many curves going through the surface so that for
each x there is only one curve (x(s), u(s)) passing through it and solving the set of
equations

dxi
d s

= ai(x, u), for i = 1, . . . , d
du

d s
= f(x, u)

that can be rewritten in the form of Lagrange-Charpit equations

(20)
dx1

a1 (x, u)
= · · · = dxd

ad (x, u)
=

du

f (x, u)
.

Equations (20) are called characteristic equations and describe d-parametric family
(coming from d integrations) of characteristic curves. If the PDE is equipped with
some initial or boundary data, then one can eliminate all the constants and find
unique solution for (19). Otherwise, general solution can be written by assuming
that all except one free parameters are expressed as some unknown functions of a
last one.



92 6. METHODS FOR ODES AND PDES


 Example Consider the initial value problem for Burgers’ equation{
∂tu+ u∂xu = 0,

u (x, 0) = φ(x).

The characteristic equations are given by

d t

d s
= 1

dx

d s
= u

du

d s
= 0,

with initial conditions

(21) t(0) = 0, x(0) = X, u(0) = φ(X),

i.e., for s = 0 (at the origin of the characteristic curve) x takes the value X, t = 0 and
u ≡ φ(x) = φ(X). All equations are immediately solved as

t = s, x = us+X, u = φ(X),

implying that X = x− tu and therefore u satisfies the implicit equation

u(x, t) = φ (x− u(x, t)t) .


 Example A radioactive sample consists of a number of identical nuclei, each with
a decay probability γ per unit time. We regard the number n (t) of undecayed nuclei at
time t as a stochastic process with initial condition n (0) = n0. The probability of having
n nuclei at time t evolves according to the following master equation

∂tP (n, t) = γ (n+ 1)P (n+ 1, t)− γnP (n, t) .

Let

F (z, t) =

∞∑
n=0

znP (n, t) ,

be a generating function for above probabilities. Then it solves initial value problem{
∂tF + γ (z − 1) ∂zF = 0,

F (z, 0) = zn0 .

The characteristic equations take the form

d t

1
=

d z

γ (z − 1)
=

dF

0
.

Solving the first equation gives

t = − ln(1− z)
γ

+ c⇒ (1− z) e−γt = A.

The second equation yields
F (z, t) = B.

It follows that the characteristic curves are given by
(
t, 1−A eγt, B

)
t∈R. We can see that

along these curves F is a constant and therefore we can put

F (z, t) = B = φ (A) = φ
(
(1− z) e−γt

)
,

which gives us a general solution. Imposing initial conditions one gets

F (z, 0) = zn0 = φ (1− z) ,
and finally

F (z, t) =
(
1 + (z − 1) e−γt

)n0
.
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One can expand the former expression in powers of z to obtain

P (n, t) =

(
n0

n

)(
1− e−γt

)n0−n
e−nγt .

4.2. Fourier transform method. Similarly to the case of ODEs, the main
idea of the method is to take Fourier transform of the equation, solve equation in
Fourier space and then use the inverse Fourier transform to go back to the original
space. However, in the case of PDE one has usually to perform a partial Fourier
transform, i.e., a Fourier transform with respect to some of the variables, and not
all of them. We demonstrate this by solving initial value problem for the heat
equation.


 Example The equation describing d-dimensional diffusion of heat is

∂u (x, t)

∂t
= α∆xu (x, t) .

The solution u(x, t) is the temperature in space as a function of time. One could think
of a metal bar insulated from outside in such a way that, as a result of the heat flow, its
temperature varies with time t and as a function of the position x inside the bar. Here
α is a positive constant, called the thermal diffusivity. We want to find the solution for
α > 0 and initial temperature profile u(x, 0) = φ(x) by Fourier Transform method.

Let us Fourier transform both sides of the equation with respect to space variable x
only by introducing the conjugate variable ξ

û(ξ, t) =

∫
Rd

u(x, t) ei〈ξ,x〉 dx.

As a result, the PDE in u (x, t) is mapped into an ODE for û(ξ, t):{
∂tû(ξ, t) = −α‖ξ‖2û(ξ, t),

û (ξ, 0) = φ̂ (ξ) .

For every fixed ξ this is an ODE in variable t with separated variables. Its solution is
given by

û(ξ, t) = C(ξ) e−αt|ξ|
2

,

where C (ξ) can depend on ξ but not t. This constant is fixed by initial condition, and
solution in Fourier space takes the form

û(ξ, t) = φ̂(ξ) e−αt|ξ|
2

.

To find u (x, t) we have to invert Fourier transform by using Theorem 2.8. This leads to

u(x, t) =
1

(2π)d

∫
Rd

û(ξ, t) e−i〈ξ,x〉 d ξ.

Observe that the Fourier transform û(ξ, t) can be considered as a product of two Fourier

transforms, the one of φ and a Gaussian e−αt|ξ|
2

. If we introduce

v(x, t) =
1

(2π)n

∫
Rd

e−αt‖ξ‖
2

e−i〈ξ,x〉 d ξ =
1

(4παt)−
d
2

e−
‖x‖2
4αt .
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This is called Green’s function for the heat equation, and solves the equation. The solution
for general initial value problem for the heat equation is given in terms of convolution

u (x, t) = v (x, t) ∗ φ(x) =

∫
Rd

v (x− y, t)φ (y) d t.

For initial condition φ (x) = δ (x) this lead to a Gaussian answer

u(x, t) = v(x, t) =
1

(4παt)
d
2

e−
‖x‖2
4αt .

This is the typical form of the solution of a diffusion process: a Gaussian whose variance
increases linearly with t and this dependence is mediated by the thermal diffusivity. Thus
the width of u (x, t) around its mean value (x = 0, which is the only value for which
u (x, 0) 6= 0) becomes larger with time, meaning that for large enough time also the points
x very distant from the origin assume a temperature different from zero.

4.3. Method of variables separation. The method of variables separation
is based on two observations:

(1) any linear combination of solutions for linear PDE is a solution as well;
(2) under the assumption that function u factorizes into product of functions

depending on single variable some equations can be simplified.


 Example We consider a boundary value problem for the Laplace equation on the
unit square Ω = [0, 1]× [0, 1] as an example of method’s application. More precisely

∆u (x, y) = 0, (x, y) ∈ Ω,

u (0, y) = u (1, y) = 0, y ∈ [0, 1] ,

u (x, 0) = x, u (x, 1) = 0, x ∈ [0, 1] .

Let us start trying to solve{
∆u (x, y) = 0 (x, y) ∈ Ω,

u (0, y) = u (1, y) = 0 y ∈ [0, 1]

searching for solutions in the form u (x, y) = φ(x)ψ(y), where φ and ψ are some functions
of single variable. Laplace equation gives

∂2
xφ(x)ψ(y) + φ(x)∂2

yψ(y) = 0⇒ ∂2
xφ(x)

φ(x)
= −

∂2
yψ(y)

ψ(y)
.

The l.h.s. of the previous equation is a function of x only, but the r.h.s. is a function of y
only. Therefore, they can be only equal to constant λ,

∂2
xφ(x) = λφ(x), ∂2

yψ(y) = −λψ(y).

A general solution for λ 6= 0 of the above equations are given by

φλ(x) = A1 e
√
λx +A2 e−

√
λx, ψλ(y) = B1 ei

√
λy +B2 e−i

√
λy .

If λ > 0, then X is given in terms of hyperbolic functions, while Y in terms of trigonometric
ones. For λ < 0 it is vice versa. For λ = 0 both functions are just linear. What we’ve got
at this point is a 4 parameter family of solutions

uλ(x, y) =


cos
(√

λy + α
)(

A cosh
(√

λx
)

+B sinh
(√

λx
))

, λ > 0,

cos
(√
−λx+ α

) (
A cosh

(√
−λy

)
+B sinh

(√
−λy

))
, λ < 0,

(x+ α) (Ay +B) , λ = 0
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Boundary conditions yield φλ (0) = φλ (1) = 0 and one can see that they can be satisfied
by φλ only with λ < 0. Let us take λ = −ω2 for ω ∈ R+, then

cosα = 0 and cos (α+ ω) = 0⇒ α =
π

2
and ω = πk, k ∈ N.

The corresponding solution is now given by

uk (x, y) = sin(πkx) (An cosh (πky) +Bn sinh (πky)) .

On the second stage of the method we try to find linear combination of functions un(x, t)
such that it will satisfy boundary conditions in y (boundary conditions in x are satisfied
automatically as every un satisfies). Let

u (x, y) =

∞∑
k=1

sin (πkx) (An cos (πky) + iBn sin (πky)) .

Boundary conditions will yield
∞∑
k=1

Ak sin (πnx) = x,

∞∑
k=1

(Ak cosh (πk) +Bk sinh (πk)) sin (πnx) = 0.

Both conditions are written as Fourier series expansions and corresponding formulas for
coefficients can be used:

An = 2

1∫
0

sin (πnx)x dx =
2 (−1)n+1

πn
, Bn =

2 (−1)n

πn
coth (πn) .

Combining all the above we obtain solution for the initial problem in the form

u (x, y) =

∞∑
n=1

2 (−1)n

πn
sin (πnx) (coth (πn) sinh (πny)− cosh (πny)) .


 Example We exemplify here all methods above calculating the time-dependent solution
of the Fokker-Planck equation for the Ornstein-Uhlenbeck process, modelling the
velocity of a Brownian particle of mass m, immersed in a fluid at absolute temperature
T , and with damping coefficient γ,

∂

∂t
P (v, t) = γ

∂

∂v
[vP (v, t)] +

γT

m

∂2

∂v2
P (v, t) ,

with initial condition P (v, t0) = δ (v − v0). We can first consider the Fourier transform
in variable v given by

P̂ (u, t) =

∫
P (v, t) eivu d v.

After multiplication of FP equation by eivu and integrating with respect to v we obtain

∂

∂t
P̂ (u, t) = −γu ∂

∂u
P̂ (u, t)− γu2 γT

m
P̂ (u, t).

The last equation is a linear, inhomogeneous PDE and we solve it by using the method of
characteristics:

d t

1
=

du

γu
= − md P̂

γ2u2T P̂
.

The first equation is easily solved as

u = C1 eγt .
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The second equation is solved by

P̂ (u, t) = C2 e−
γkT
2m

u2

.

It follows that the general solution of the PDE can be written as

P̂ (u, t) = φ
(
u e−γt

)
e−

γT
2m

u2

,

for an unknown function φ. Such a function can be fixed by the initial conditions. Indeed,
the initial value can be easily calculated and is given by

P̂ (u, t0) =

∫
δ (v − v0) eiuv d v = eiuv0 .

so that

φ
(
u e−γt0

)
e−

γT
2m

u2

= eiuv0 ⇒ φ(u) = exp

(
iu eγt0 v0 +

γT e2γt0

2m
u2

)
.

Combining the above we obtain

P̂ (u, t) = exp

iu e−γ(t−t0) v0 −
γkT

(
1− e−2γ(t−t0)

)
2m

u2

 .

Taking inverse Fourier transform we can calculate function P (v, t)

P (v, t) =
1

2π

∫
P̂ (u, t) e−iuv du

=

√
m

2πγT (1− e−2γ(t−t0))
exp


−m

(
v − v0 e−γ(t−t0)

)2

2T (1− e−2γ(t−t0))

 .

Exercises

(1) Find the solutions to the following first order ODEs
(a) ẋ(t) = 6t2x(t).
(b) t (t+ 1) ẋ(t)− (t+ 2)x(t) = t3 (2t− 3).

(c) d y(x)
d x = sin x

y(x) cos y(x) .

(d) xd y(x)
d x + y(x) = x2 + 1.

(e) d y(x)
d x + tan(x)y(x) = cos2(x) with condition y(0) = 2.

(2) Find the solutions to the following second-order ODEs
(a) ẍ(t) + 11ẋ(t) + 24x(t) = 0.

(b) d2 y(x)
d x2 + 4d y(x)

d x + 4y = 0.

(c) d2 y(x)
d x2 − 8d y(x)

d x + 17y = 0, y(0) = −4, y′(0) = −1.
(d) ẍ(t) + 9x(t) = t, x(0) = 0, ẋ(0) = 0.

(e) d2 y(x)
d x2 + 3d y(x)

d x + 2y = e−x, y(0) = −4, y′(0) = −1.
(3) The time evolution of the magnetisation m of a ferromagnetic material in

the vicinity of the critical temperature Tc is described by the dynamical
system

dm(t)

d t
= f (m(t)) = am(t)−m3(t),

where a = Tc−T
Tc

and T is the temperature.
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(a) Sketch the phase portrait for the cases T > Tc and T < Tc. Write
down the fixed points of the motion and the invariant open sets of
the dynamics for both T > Tc and T < Tc; discuss the stability of
the fixed points in both cases.

(b) Show, for T < Tc - without using the exact solution of the differential
equation - that, if m(0) =

√
a/2, the system will not reach x =

√
a

in finite time.
(c) Show, for T < Tc the exact solution of this equation, with initial

condition m(0) =
√
a/2 is

m(t) =

√
a

1 + 3 e−2at
.

(d) For T > Tc and for T = Tc give solutions of the asymptotic equation
of motion in vicinity of m = 0, assuming m(0) = m0 > 0, but small.

(4) A second order dynamical system is described by the differential equations{
ẋ(t) = y(t) + x(t)f (r(t)) ,

ẏ(t) = x(t) + y(t)f (r(t)) .

where r(t) =
√
x2(t) + y2(t). Show that the system is separable in hyper-

bolic coordinates (r, θ) where x = r cosh θ, y = r sinh θ and in particular

that ṙ(t) = r(t)f (r(t)) and θ̇(t) = 1.
(5) Consider the second order dynamical system described by{

ẋ = f1 (x, y) = 2xy,

ẏ = f2 (x, y) = 1− x2 − y2.

Find the null-clines of f1 and f2. Use them to find the fixed points of
the system. Sketch the phase portrait including the null-clines, using the
usual arrow representation of the phase- flow. Discuss the nature and
stability of the fixed points.

(6) Given the second order dynamical system{
ẋ = f1 (x, y) = e−x−y −1,

ẏ = f2 (x, y) = sin (x− y) .

(a) Determine the null-clines of f1 and f2 and the fixed points of the
system.

(b) Compute the Jacobian Jf associated with the dynamical system and
evaluate it at the fixed points.

(c) Determine the eigenvalues of the Jacobian and thereby the Jordan
canonical form J∗ corresponding to Jf .

(7) Using method of variables separation solve forced heat equation on a one
dimensional strip

∂tu− a2∂2
xu = e−t, x ∈ [0, 1] , t > 0

with boundary conditions{
u (0, t) = 0,

u (1, t) = 1.
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and initial condition

u (x, 0) = x (1− x) .

(8) Using Fourier transform method solve wave equation in d dimensions

∂2
t u = c2∆xu, x ∈ Rd, t > 0.

with initial conditions

u (x, t) = φ(x).

Find the corresponding Green’s function for the wave equation.
(9) Using Fourier transform method solve Laplace equation in half plane

∆u (x, y) = 0, y > 0, x ∈ R,
with Cauchy boundary conditions

uy − αu|y=0 = φ(x).
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