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Il tempo a disposizione è pari a 180 minuti e il punteggio massimo della prova è pari
a 33 punti. Risposte non giustificate non verranno conteggiate. L’uso di calcolatrici
grafiche, tablet, smartphones o apparecchiature in grado di comunicare con l’esterno non
è consentito. È possibile utilizzare una calcolatrice scientifica standard.

Esercizio A
Moto in campo centrale

Si consideri un punto materiale di massa unitaria, in moto in un campo
centrale prodotto dal potenziale

V (x) = 2∥x∥2 − 1
2∥x∥2 − α ln ∥x∥, x ̸= 0, α ≥ 0.

A1 [4 pt] Supponendo che nell’istante t = 0 si abbia x(0) = x0 ̸= 0 e ẋ(0) =
v0 ̸= 0, con x0 ∧ v0 ̸= 0, si mostri che il moto del punto materiale
avviene in un piano.

A2 [6 pt] Si assuma α = 1. Si studi qualitativamente, al variare dell’energia
meccanica, il moto radiale del punto materiale supponendo il modulo
L del suo momento angolare rispetto all’origine del riferimento valga
L = 1. Si specifichi il periodo delle orbite circolari.

A3 [5 pt] Si assuma ora α = 0. Si calcoli il tempo necessario ad un punto
materiale con L = 1 ed energia meccanica E > 1/2 per collidere con
il centro del potenziale partendo dal suo apocentro.

Esercizio B
Formalismo lagrangiano

Si consideri un sistema descritto dalla lagrangiana

L(q, q̇) = 1
2⟨q̇, q̇⟩ − V (q), V (q) := ∥q∥2(∥q∥2 − 1)

2 +
αq21
2 ,

data in termini delle coordinate generalizzate q = (q1, q2)⊺ ∈ R2 e dipen-
dente dal parametro α ≥ 1.

B1 [3 pt] Si scrivano le equazioni di Lagrange associate.
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B2 [6 pt] Si assuma α = 0. Si verifichi che il sistema lagrangiano ammette
come simmetria il gruppo ad un parametro

(q, t) 7→ Gs(q, t) = (R(s)q, t), R(s) =
(

cos s sin s
− sin s cos s

)
∈ SO(2),

e si scriva l’integrale primo associato.
B3 [6 pt] Si assuma α > 1. Si determinino i punti di equilibrio e se ne studi

la stabilità.

Quesito [3 pt] — Durante lo scorso appello, uno studente di matematica,
durante una prova orale, ha disegnato la seguente separatrice in un diagram-
ma delle fasi per un moto unidimensionale parametrizzato dalla variabile x
e indotto esclusivamente dall’azione di un potenziale V (x) ∈ C2(R):

−1 1
−1

1

x

ẋ

Si spieghi perché questo diagramma non può essere corretto.
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Schema di risoluzione

Esercizio A.
A1 Si vedano gli appunti delle lezioni sui moti in campo centrale.
A2 Sia L il modulo del momento angolare. Detto r := ∥x∥, il moto

radiale avviene in un potenziale effettivo

Veff(r) =
L2

2r2 + 2r2 − 1
2r2 − ln r.

Per L = 1 questo potenziale è quindi

Veff(r) = 2r2 − ln r.

Si tratta di un potenziale C∞((0,+∞)) i cui punti stazionari sono
individuati da

V ′
eff(r) = 4r − 1

r
= 0 ⇒ r = 1

2 ≡ r0.

Questo è un punto di minimo essendo V ′
eff(r) < 0 per r ∈ (0, 1/2) e

viceversa V ′
eff(r) > 0 per r > 1/2. In tale punto Veff(1/2) = 1/2+ln 2 ≡

V0. Abbiamo cos̀ı che il moto è proibito per E < V0, corrisponde
ad un’orbita circolare di raggio r0 per E = V0, mentre è limitato
radialmente tra un pericentro ed un apocentro per ogni E > V0.
Non ci sono separatrici nel diagramma di fase per il moto radiale,
rappresentato nella figura seguente.
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L’unica orbita circolare ha periodo

τ =
2πr20
L

= π

2 .

A3 Per α = 0 ed L = 1, il potenziale efficace radiale è Veff(r) = 2r2.
Data l’energia meccanica E > V0 = 1/2, l’apocentro è a distanza
r+ dal centro tale che E = Veff(r+) ⇒ r+ =

√
E
2 , per cui il tempo

necessario per raggiungere l’origine è

t = −
0∫

r+

1√
2(E − 2r2)

d r = 1
2

1∫
0

1√
1− x2

dx = π

4 .
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dove abbiamo eseguito la sostituzione x = r
r+

e il segno negativo
a fronte nella prima espressione tiene conto del fatto che in questo
moto la velocità radiale è negativa (la distanza radiale decresce).

Esercizio B.
B1 Esplicitiamo le equazioni di Eulero–Lagrange

d
d t

∂L
∂q̇1

− ∂L
∂q1

= q̈1+q1(2∥q∥2−1+α) = 0, d
d t

∂L
∂q̇2

− ∂L
∂q2

= q̈2+q2(2∥q∥2−1) = 0.

B2 La simmetria proposta lascia invariante la Lagrangiana, e in partico-
lare l’azione. Basta infatti osservare che la Lagrangiana dipende solo
da ∥q∥2 e ∥q̇∥2, quantità entrambe invarianti sotto l’azione gruppale,
Gs(q, t) = (qs, ts) ≡ (R(s)q, t), essendo ∥qs∥2 = ⟨R(s)q,R(s)q⟩ =
⟨q,R(s)⊺R(s)q⟩ = ∥q∥2 e similmente per ∥q̇∥2. Abbiamo che

ξ(t,q) := dqs
d s

∣∣∣∣
s=0

= dR(s)
d s

∣∣∣∣
s=0

q =
( 0 1
−1 0

)
q, τ(t,q) := d ts

d s

∣∣∣∣
s=0

= 0.

Per via del teorema di Noether, l’invariante è

I =
〈
∂L
∂q , ξ − τ q̇

〉
+ τL =

〈
∂L
∂q , ξ

〉
= q̇1q2 − q̇2q1.

B3 Le condizioni di stazionarietà del potenziale V per α = 1 si scrivono
q1(2∥q∥2 − 1 + α) = 0, q2(2∥q∥2 − 1) = 0.

Dalla seconda equazione, otteniamo che q2 = 0 oppure ∥q∥2 = 1/2.
Il primo caso comporta, nella prima equazione, q1(2q21 + α− 1) = 0,
ovvero q1 = 0, per cui questo caso corrisponde alla soluzione

q0 = (0, 0).
Il secondo caso comporta, nella prima equazione, q1 = 0, per cui
q2 = ± 1√

2 , ovvero abbiamo la coppia di soluzioni

q± = (0,±1/
√
2).

La stabilità di questi punti stazionari può essere studiata studiando
la matrice hessiana

Hess[V ](q) =
(
6q21 + 2q22 + α− 1 4q1q2

4q1q2 6q22 + 2q21 − 1

)
.

In q0 abbiamo

Hess[V ](q0) =
(
α− 1 0
0 −1

)
che ha un autovalore negativo ed è perciò instabile. In q± abbiamo

Hess[V ](q±) =
(
α 0
0 2

)
che è definita positiva e perciò corrisponde a due punti di equilibrio
stabile.
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