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Abstract

Here we study the effect on the Arctic region of a randomly weighted Aztec diamond
lattice first modelling the ground state of the lattice - such that it is the dimer covering with
minimal cost, by utilising the Belief Propagation (BP) algorithm . We saw that a randomly
weighted Aztec diamond does indeed to have a deterministic Arctic region occurring at the
cardinal boundaries of the lattice, such that the edges outside of a limit shape, known as the
Arctic circle, would either always be occupied or never occupied - thus having zero variance.
Next, excitations could be induced on the ground state dimer covering either within the Arctic
region or the Arctic circle, to ascertain the effect of the Arctic region. The excitations caused
self-avoiding cycles of lengths dependent on the location of the excitation and along with the
size of the lattice. Excitations caused in the Arctic circle showed no likely sign of altering the
Arctic region and was thus equivalent to the ground state minus some minor fluctuations in
the edge variance. On the other hand, excitations induced in the Arctic region did indeed
experience an increase in edges with zero variance, thus increasing the size of the Arctic region.
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CHAPTER 1

Introduction

Consider a square lattice of any size with random cost assigned to each edge and imagine
a perfect matching such that the lattice forms a collection of bijective edges. Each node may
only be attached to a single edge while retaining that the sum of all these edges is the minimal
collective weight possible - this is a classical combinatorial optimisation process known as the
matching problem (MP). Each possible configuration is a dimer covering, but there can only
be one minimal cost, and one maximal cost. Though this may seem simple to begin with,
an increase in the size escalates the complexity of the problem. Though this model perhaps
seems generic, dimer coverings also appear in models and theories in statistical physics [6].
Therefore dimer coverings have been widely studied, and for good reason.

There are many approaches and algorithms used to solve the MP, and someone could
viably use brute force to find an optimal solution in arbitrarily small graphs; however, when
a graph increases in size, such methods become tedious. Here, the Belief Propagation (BP)
algorithm will be applied behind the scenes to efficiently find the optimal solution to a MP, and
it will very much deserve credit for its application. BP is a message-passing technique used
to provide marginal probabilities on a factor graph efficiently - such that each node passes
messages iteratively through the graph until the algorithm settles on an optimal solution.
BP has been proven to provide correct results and converge with a limited amount of cases;
however, it has been shown to efficiently converge to the bipartite Assignment Problem (AP)
[2][3].

Here, the dimer coverings on a randomly weighted Aztec diamond will be approached.
The Aztec diamond is not just an interesting shape as opposed to the square lattice, but
as its size approaches a higher order, a deterministic limit shape forms within the central
region - the Arctic circle. At least, this is the case on a random dimer covered Aztec diamond
with one-periodic weights, such that vertical edges are weighted 1 and horizontal edges are
weighted a. Limit shapes have also been observed in other forms of weighted Aztec diamonds,
such as two-periodic weighting, and the double Aztec diamond. There remains a gap in the
literature on a randomly weighted Aztec diamond, and the effect on the Arctic circle.

Consider a more complicated dimer model by defining the lattice as a substrate, and the
nodes as diatomic molecules. The random edge weights may be considered to be their space-
dependent binding energy. The importance is to understand how the boundaries of the lattice
effects the deposition of the molecules. Therefore, approaching the of diatomic molecules as
a randomly weighted Aztec diamond results in a statistical analysis of the behaviour of the
system which may be fit and applied to a more realistic model.

In the 1960s, Kasteleyn, and Temperley and Fisher accidentally explored the asymptotic
expressions of the number of dimer coverings on an infinite lattice simultaneously [6]. Chapter
2 explores dimer coverings - starting from Kasteleyn’s approach for a n × m board, to the
structure of the Aztec diamond and to the formation of the Arctic circle.

Chapter 3 will then approach the random AP - which is a commonly applied combina-
torial optimisation process for finding the Maximum Weight Matching in a bipartite graph.

1



Then, it will be shown how BP can be applied to a specific optimisation process, and how the
replica symmetric cavity method can be approached for utilisation in programming BP.

BP will be used to compute the optimal covering, known as the ground state, of the
Aztec diamond. The effect of the random weighted Aztec diamond can be explored through
its variance - which will determine the nature of an Arctic region in this model. Excitations
are forced on the ground state in different parts of the lattice by removing an edge that
occurs in the ground state of the dimer covering. This too will be explored to see how these
excitations effect the Arctic region.
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CHAPTER 2

Domino Tilings and Dimer Coverings

1. What is a dimer covering?

Given a graph G, a dimer covering of G is a subset of edges which covers every vertex
exactly once. In other words, a dimer covering is a perfect matching M , subset of the edge
set of G, such that each vertex in G is the endpoint of one edge only in M [15]. Such a simple
problem has not only been studied in the realm of combinatoric and graph theory, but also
physics. The dimer covering problem is a special type of tiling problem, performed using a
tiling unit as a dimer, or domino - i.e., a unit of two vertices and the edge joining them. Tiling
problems have been intensely investigated, and in particular the case of planar graphs, i.e.,
graphs which can be embedded in the plane [14]. As an example, consider Figure 1, an 8× 8
chessboard - it can be modelled as a (bipartite) planar graph such that each black (white)
square is associated to a black (white) node of a graph, and edges connect nodes corresponding
to adjacent squares. Therefore, any edges connecting two adjacent squares would have one
black and one white node. This tiling problem consists in covering the chessboard using 2× 1
and 1 × 2 dominoes, where they could not overlap, or equivalently to search for a perfect
matching in the corresponding graph:

=⇒

Figure 1. 8 by 8 chessboard (left) to a 8 by 8 graph representation of the
chessboard (right).

In general, the dominoes become equivalent to dimers, and the grid becomes a lattice;
hence, by taking R as a region bounded by a simple closed polygonal curve in Z2, a domino
tiling of R correlates to a perfect matching on G, the dual graph of R, such that G has a
vertex for each lattice square in R, with two vertices adjacent if and only if the corresponding
lattice squares share an edge [13] - this is stating that an edge may only exist if nodes are a
single unit apart.

Tilings were originally studied in statistical mechanics as minimal models for diatomic
molecules’ deposition on a lattice [15]. The dominoes are seen to be equivalent to dimers,
which are two molecules connected by a bond, and the grid is therefore equivalent to the
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deposition lattice. Therefore, it is straight forward to formulate that the arrangement of
dominoes on a lattice are convenient because the thermodynamic properties can be formulated
from the amount of arrangements where there is a zero energy of mixing [5].

1.1. Counting dimer coverings.
The first question that might arise about dimer coverings on a graph is how many coverings
are possible. To compute the number of dimer coverings on any bipartite planar graph, an
intriguing method called the KTF (Kasteleyn-Temperley-Fisher) method was introduced [14].
It is important to note that this method can also be generalised to non-bipartite planar graphs.

1.1.1. The Boltzmann Measure.
Considering a finite bipartite planar graph G = (B ∪ W, E), with black nodes set B =
{β1, ..., βn} and white nodes set W = {α1, ..., αn}, and corresponding edge set E , such that
each edge joins nodes of different color only. Giving weights w on the edges as positive real
numbers, such that w : E → R+, and with P = P(G, w) a probability measure is defined on
the dimer coverings for each dimer covering M of G

(1) P(M) =
1

Z

∏
e∈M

w(e),

and where the partition function Z is given by:

(2) Z =
∑
M

∏
e∈M

w(e).

1.1.2. Kasteleyn’s formula.
Starting with equation 1, Kasteleyn was able to determine the number of possible tilings of
any m× n bipartite planar square lattice. He showed that this number is equal to

√
| detK|,

where K is the weighted adjacency matrix of the graph G, called Kasteleyn matrix [12] [13].
The weight of the edges had to be assigned in such a way that, given a black vertex B and a
white vertex W [11]

(3) K(αi, βj) =


1 if e is horizontal

i if e is vertical

0 otherwise (no edge)

,

where
√
−1 = i. For the n×m board, Kasteleyn proved that

(4)
√
|detK| =

[m
2
]∏

j=1

[n
2
]∏

k=1

(
4 cos2

jπ

m+ 1
+ 4 cos2

kπ

n+ 1

)
.

The full derivation of Kasteleyn’s formulation can be found in the following references [12]
[21]. As an example, if the number of possible tilings in an 8× 8 chessboard where n = 8 and
m = 8 would be 12,988,816. It is fascinating to break down Kasteleyn’s formula and see that
it is actually a multiplication of mostly irrational numbers, where the result for the number
of tilings is always an integer [1].

Furthermore, Kenyon’s formula [11] [14] was used as an extension of the Kastelyn
matrix to show the probability of finding a specific dimer configuration, which was given by
introducing the inverse Kasteleyn matrix K−1(βj , αi), showing that the dimers are in fact a
determinantal point process.

This particular dimer covering problem is therefore a two-dimensional model that is
exactly solvable. Its partition function and correlation functions can be written as the function
of determinants at finite volume.
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Figure 2. Example of the height function on a rectangular lattice.

Kasteleyn’s approach can be extended to any finite subset of Z2 to compute the number
of domino tilings. However, this is not stating that any subset of Z2 can be tiled. A classical
example is the mutilated chessboard [1] [19]. If two diagonally opposite corners of a n × n
chessboard were removed, would a tiling exist? Simply, no - and the reasoning is shown with
simple logic. Dealing with a bipartite board, removing two diagonally opposite corners of the
board results in an unequal amount of black and white squares. Either two black, or two
white squares have been removed, meaning, after any attempt to tile the domain there would
be two squares left of the opposite colour. This can also be seen by attempting to find the
number of tilings via the determinant. If K is a non-square matrix, then the detK = 0, and
there cannot be any dimer covering.

1.2. Height Function and Gibbs Measure.
The dimer covering problem is the study of natural measures, or Gibbs Measure, on the set
of dimer coverings of a graph, often categorised as a planar graph, for example a subset of
Z2 [15], such that, a probability measure on a set of dimer coverings of an infinite size limit
is a Gibbs measure - a weak limit of a Boltzmann measure; therefore, for a finite subset of a
graph, the probability of a specific set occurring on a finite set will converge. The simplest
assumption, in this sense, is to assign the same weight to all possible dimer coverings of the
given graph, i.e., assume a uniform Gibbs measure over all dimer coverings. Though this model
might not be considered entirely realistic for modelling physical processes, it interestingly may
allow for an analytical treatment, and may exhibit non-trivial properties [7].

A popular approach adopted to study dimer coverings on subsets of Z2 is to introduce
a height function [14], i.e., a surface defined on the plaquettes of the lattice that is unique
for a given dimer covering. The height function is constructed in such a way that crossing
an edge occupied by a domino, the height increases by one if the node to the left is white,
and decreases by one if the node to the left is black. Using the height function as a third
coordinate, a certain class of the random surface model of the domino coverings is obtained
in terms of the statistical properties of the height functions induced by the underlying Gibbs
measure [14]. In particular, by means of the height function, it emerged that there are three
types of phases identifiable which depend on the fluctuation properties on the surface. These
are classified as frozen, liquid, and gaseous phases. By utilising the height function, an origin
point is taken and the height is set to zero. Then the three phases are defined as follows:

Frozen phase: the fluctuations of the height functions are deterministic, such that the
variance is zero - therefore, these fluctuations are finite regardless of how far from
the origin.
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Liquid phase: the fluctuations of the height function have a variance increasing with
increasing distance from the origin.

Gaseous phase: the fluctuations of the height function have a bounded variance in-
dependently from the origin.

Domino tilings often experience two out of the three phases in the limit shape, which are the
frozen phase and the liquid phase [14]. Though under specific conditions, a domino tiling
may exhibit a gaseous phase, such is seen in the two-periodic weighting of the Aztec diamond
[4].

1.3. The Aztec Diamond.
An Aztec diamond, An, is defined as the lattice squares contained in {(x, y) : |x|+|y| ≤ n+1},

where n is the order of the Aztec diamond. Examples of various sizes of the Aztec diamond
are given in Figure 3.

Consider the Aztec Diamond given in Figure 3 (C) for n = 8. The number of nodes
in an Aztec diamond graph, it is obtained by stacking successive centred rows of length
2, 4, ..., 2n− 2, 2n, 2n, 2n− 2, ..., 4, 2 [22].

Therefore, for an Aztec diamond of order n, the number of nodes (or unit squares) are
given by:

(5) 2
n∑
k=1

2n = 2n(n+ 1),

where
∑n

k=1 2n is equal to n(n + 1). As an extension, the number of all possible tilings for

An is given by 2n(n+1)/2 [23]. Therefore, in the case of Figure 3 (C), the graph has exactly
144 nodes, and 262,144 possible coverings, in which one of the possible coverings is shown in
Figure 4.

A concurrent study by Temperley and Fisher arrived at the same result, though with
a differing methodology, and as a consequence of their individual results, showed that the
logarithm of the number of tilings on a m × n board, divided by the number of dominoes,
converges to 2G/π ≈ 0.58, and subsequently, in the case of the Aztec diamond that the
logarithm of the number of tilings, divided by the number of dominoes, converges to log(2)/2 ≈
0.35. Therefore, by comparing an m×n board, where n = m = 68, and an Aztec diamond of
order 64, the number of tilings in the former is greater even though the region of the square
board has a slightly smaller area than an Aztec diamond of order 64 [8].

1.3.1. There are four types of dominoes.
Perhaps not immediately evident in Figure 4, but there are four types of dominoes that occur
depending on the orientation of the domino and the location of black and white nodes. Due
to the shape of the Aztec diamond, there is a high probability, increased with the order n,
that there occurs a cluster of specific domino types at each corner, which is called the Arctic
region [10]. The four types are defined as:

(1) West: A domino with vertical orientation where the top node is black and the bottom
node is white,

(2) East: a domino with vertical orientation where the top node is white and the bottom
node is black,

(3) North: a domino with horizontal orientation where the left node is black and the
right node is white,

(4) South: a domino with horizontal orientation where the left node is white and the
right node is black.
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(a) A2.

(b) A5. (c) A8.

Figure 3. A small sample of Aztec diamond sizes An for various orders n.

Taking the same Aztec diamond dimer covering in Figure 4 and the allocated colours
depending on the domino type shown in Figure 5, results in Figure 6.

1.3.2. The Arctic circle phenomena.
When n of an Aztec diamond increases, the chance of frozen regions occur with asymptotically
high probability; such that, the tilings found at the North, East, South, and West corners
become very regular with their respective domino type, as they are out of phase with one
another. These regions are called polar regions, i.e., polar North is the frozen region at the
north corner of the Aztec diamond. As the distance from the polar regions increase, so do
the domino types - the fluctuations of the domino types become somewhat chaotic; hence,
entering the temperate region, a liquid phase. This gives the formation of the limit shape
known as the Arctic Circle. The Arctic circle has in fact been well defined, and occurs in
most randomly generated Aztec diamonds [10].

Comparing Figure 6 to Figure 7, the existence of a limit shape becomes obvious in
higher orders. The Arctic circle centred in the middle of the Aztec Diamond is surrounded
by the four polar regions, all with uniformly layered tiles, the Arctic region. If n were to
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Figure 4. Dimer covering of an Aztec diamond of order 8.

(a) North. (b) East. (c) South. (d) West.

Figure 5. Colour coordination with respect to the four types of dominoes.
Colours are interchangeable as long as they are consistent.

approach infinity, the Arctic circle would become increasingly circular, and the radius of the
Arctic circle is known to become arbitrarily close to a perfect circle with n

√
2 [10]. In other

words, as the order n→∞ the probability that the occupied edges in a matching developing
Arctic regions and a temperate central region increases which converges to the Arctic circle
radius of n

√
2.

Using the definitions of the types of dominoes played an important part in proving that
an Aztec diamond of order n has exactly 2Tn possible tilings [10], where Tn is a triangular
number defined to be Tn ≡

∑n
k=1 k = 1

2n(n+ 1). Furthermore, an algorithm called shuffling
was used to uniformly generate random domino tilings of the Aztec diamond [10].

Shuffling is a stochastic process in which domino tilings of the Aztec diamond of order
n − 1 are turned into various tilings of the Aztec diamond of order n. Consider tiling an
Aztec diamond of order n − 1, whereas each domino has been assigned an orientation, as
seen previously with the four types of dominoes in Figure 5. If two dominoes share their
side of length 2, their assigned direction must be opposite. For example, with an Aztec
diamond n = 1 one domino must face north or east, while the other faces either south or
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Figure 6. The same dimer covering for n = 8 in Figure 4 following the domino
types.

west. Therefore a directional arrow can be assigned in the centre of the domino with its
corresponding direction 8. The dominoes are then defined to be either good blocks or bad
block, where the former is when the arrows are facing away from each other, and the latter is
when the arrows are pointing towards each other.

The three steps in shuffling are identified to establish a random tiling of the Aztec
diamond. These are known as destruction, sliding, and creation. Destruction occurs when
dealing with bad blocks. When the arrows are facing one another as in Figure 8 (A), the
two-by-two block is removed from the board, and for sliding, all the good blocks are moved
by one unit in the direction of the corresponding arrow. This would then begin to fill an
Aztec diamond of order n - however, there remain multiple two-by-two empty blocks. These
first two steps ensure that no overlapping dominoes can occur. Therefore, the creation step
is a random process that places two dominoes, in the form of a good block, of any orientation
to fill in the gaps as seen in Figure 8 (B). The orientation is essentially being determined by
a coin flip, and therefore there is a 50% chance that the block consists of a north and south
leaning block, or an east and west leaning block. This would result in a complete tiling of An,
an example of the shuffling process is seen in Figure 9. Since all the arrows in the tiling are
properly aligned, then the Aztec diamond can be continuously expanded. Shuffling can also
be established in reverse, where all good blocks are removed, and the dominoes left slide in
the opposite direction.

The iterated shuffling yields a uniform distribution on the set of tilings, where T is
the domino tiling of order n − 1 that has k(T ) bad blocks and so k(T ) + n good blocks will
need to be added in the creation step for the Aztec diamond to have a net increase in area
of 2n(n + 1) − 2(n − 1)n = 4n. Hence, T retains the possibility of giving any of the 2k(T )+n

tilings T ′ of the diamond of order n, and each has an equal probability of 2−(k(T )+n) [10].
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Figure 7. A dimer covering of a one-periodic weighted Aztec diamond of
order 200. Notably the increase of size results in a smoother looking Arctic
circle [24].

.

(a) Bad blocks removed
during the destruction
stage.

(b) Good blocks
formed during the
creation stage.

Figure 8. Domino blocks that occur during shuffling algorithm. If the arrows
are pointing towards each other the block is destroyed (A). Gaps in the Aztec
diamond are replaced with dominoes (B) in the creation stage.

Paying attention to the boundaries of the Aztec diamond during shuffling, there is an
understanding of how the Arctic circle is occurring. When expanding the order of the Aztec
diamond, the dominoes move in the direction of the arrow. At the boundaries, the dominoes
can slide either east and west, or north and south. Consider the tiling as seen in Figure 9 - if
the dominoes move in the latter direction, there remains a two-by-two block for establishing
new dominoes. This set will have a 50% chance of either facing the north and south again, or
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(a) Domino tiling A8 about to pass through the
stages of the shuffling algorithm.

(b) The Domino tiling A8 has been expanded into a domino
tiling of A9 through the shuffling algorithm.

Figure 9. Expansion of A8 to A9 by utilising the shuffling algorithm. The
bad blocks were removed, and the remaining dominoes were shifted in the
direction of their corresponding arrow. Gaps remain, where good blocks will
be created [10].
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in the east and west direction. When the domino slides into the west direction, the domino
remains even if there is an infinite expansion of the order; hence, giving the frozen region.
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CHAPTER 3

The Random Assignment Problem and Belief Propagation

1. The Assignment Problem

Considering the commonly applied combinatorial optimisation process for finding the
Maximum Weight Matching in a bipartite graph, which will be referred to as the Assignment
Problem (AP) [3] [2] [17]. The classical representation for the AP is to consider N workers
and N jobs, where each worker i has been assigned a cost for completing job j. The idea is
to find a way to minimise the cost for the project in such a way that each worker i has a job
j in a bijective manner.

1.0.1. Mathematical formulation.
To put into a mathematical perspective by considering a weighted undirected complete

bipartite graph KN,N = (V1,V2, E), where V1 = {1, ..., N} and V2 = {1, ..., N}, and {i, j} ∈ E
where i ∈ V1 and j ∈ V2 and for 1 ≤ i, j ≤ n. Let each edge (i, j) have weight wij ∈ R+. Here

(a) Graphical representation of the Assign-
ment problem with 3 workers and 3 jobs.

(b) Factor graph representation
of the same Assignment problem,
where the dashed filled squares are
the functional nodes that hold the
edge weights.

Figure 1. A small Assignment problem represented in (A) being viewed as
a factor graph in (B). Every edge holds a cost, and the solution results in a
perfect matching such that there are only 3 edges which are vertex disjoint,
and the sum of their costs is minimal [17].
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there would be an N×N cost matrix {Eij} given that |V1| = |V2| = N . An assignment is such
that each node i is only connected to one node j, following the variable for the occupancy
number mij ∈ {0, 1}, where mij = 1 if the edge exists, and mij = 0 otherwise. Following the
constraint

∑
i∈V1

mij ≤ 1 ∀j ∈ V2,(6)

∑
j∈V2

mij ≤ 1 ∀i ∈ V1,(7)

such that the assignment is a bijective matching from nodes V1 to nodes V2, and therefore it
is the permutation of the set π of {1, ..., N} [20] [17]. A matching is defined as a set of non-
adjacent edges, such that any edge has no node in common. Therefore, a maximal matching
is when having an additional edge to a current matching would mean that the graph is no
longer matching. A matching is maximum when the graph has maximal cardinality with the
maximal matching. Finally, since a perfect matching is a matching that matches all nodes of
the graph, then evidently by following these definitions, a perfect matching must be maximal
and maximum [17]; hence, it is possible to search for the maximum cardinality matching that
has a minimum cost with the above equations, and thus maximised by using

(8) |M | =
∑
ij

mij ,

and the cost of the matching is given by

(9) EKN,N
[M ] =

1

|M |
∑
ij

mijwij ,

such that the optimisation is finding the permutation that minimises EKN,N
[M ] [20].

1.0.2. Average Optimal Cost.
The interest in the minimum-weight perfect matching for a bipartite graph with N vertices

to N vertices, and the behaviour of the Average Optimal Cost (AOC) was evaluated using
both the replica approach, and the cavity method for N → ∞. The vertices were weighted
by edges with i.i.d random variables from an exponential distribution.

It was discovered that when N →∞, the AOC followed the conjuncture

(10)

N∑
i=1

1

i2
,

and evidently, the AOC converges at π2/6 [20] [18].
Such a conjecture proves useful for the AP, as the AOC can be used as a method to

prove that weights are indeed random, and for N of any size the AOC will converge.

1.1. Belief Propagation Algorithm.
Belief propagation (BP) or max-product is an iterative message-passing algorithm used

for performing inference of a discrete probability distribution specified by a graphical model
[3] [2] [17]. Such a method is often used to accurately compute the marginal distribution
of a graphical model for each variable, and the conditional probability distribution of any
variable - or additionally to find the maximisation, such that finding the most probable state
in which the graphical model would obtain is desirable. Normally, it would otherwise take a
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naive method of solving by summing all configurations in a graphical model with N variables
x = (x1, ..., xN ) - evidently this method would grow exponentially. The complexity of this
method can be reduced by utilising BP which recursively sums over all variables, such that
BP can been proved to converge to the optimal solution in polynomial time.

The development of BP has been proven to be highly efficient in tree-graphs, such that it
can compute marginals and partition functions correctly; however, it may be considered naive
to assume that BP can be used for general graphs, such as graphs that contain cycles, or loops.
The use of Loopy Belief Propagation (LBP) has been used on graphs containing loops, but
does not guarantee convergence, and computed marginals are often approximations. However,
some cases have shown that LBP can be used under specific conditions to solve regular graphs
with extreme accuracy [17].

1.1.1. Message Passing.
Consider the graph found in Figure 2 with three variable nodes and three functional nodes,

written as the function [16]

(11) g(x1, x2, x3) = fA(x1)fB(x1, x2)fC(x2, x3),

where x1, x2, x3 ∈ {1, 2, ..., N}, is used to efficiently compute

(12) g1(x1) =
∑
x2,x3

g(x1, x2, x3).

The sums in the equation (11) can be regrouped in terms of messages between variable nodes
and factor nodes [16] [17]. This is achieved by recursively pushing the summation, where for
g1(x1) messages are first sent from the furthest node towards the parent node, such that the
first message is sent from variable node x3 to factor involving x2 and x3:

(13)
∑
x2,x3

g(x1, x2, x3) = fA(x1)
∑
x2

fB(x1, x2)
∑
x3

fC(x2, x3),

where the last summation can be reduced as a message passed from right to left where

(14)
∑
x3

fC(x2, x3) = µfC→x2(x2).

This reduces the equation to

(15)
∑
x2,x3

g(x1, x2, x3) = fA(x1)
∑
x2

fB(x1, x2)µfC→x2(x2).

Again, the last summation is reduced as a message passed, where

(16)
∑
x2

fB(x1, x2)µfC→x2(x2) = µfB→x1(x1),

and thus giving

(17) g1(x1) = fA(x1)µfB→x1(x1),

which is far more efficient than equation 12.
Understanding this relation can show that there is a large reduction in calculations

necessary to solve equation 1.1.1, especially in regards to large graphs. For example, if there
were a function

(18) g(x1, x2, ..., xk) = f2(x1, x2)f3(x2, x3)...fk(xk−1, xk),
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Figure 2. Graphical representation of equation (11), where the circular nodes
represent variable nodes, and the square nodes represent functional nodes.

where x1, x2, ..., xk ∈ {1, 2, ..., N}, to compute

(19) g1 =
∑

x2,x3,...,xk

g(x1, x2, ..., xk),

without message-passing, there would be one summation over k − 1 variables resulting in
O(Nk) calculations; whereas, by utilising message-passing, there would be k − 1 summations
over one variable giving O(k ×N2) calculations, which is significantly less in larger graphs.

Following the example from above, the message-passing update rules for BP in factor
graphs can be generalised, where for each edge (i, a) there is a factor node i and a variable
node a. These messages are iteratively computed (where t stands for the t-th iteration)
locally at the nodes; therefore, the nodes are updating the outgoing messages depending on
the incoming messages. These update rules for BP [17] are as follows:

(20) µ
(t+1)
j→a (xj) ∼=

∏
k∈∂jra

µ̂
(t)
b→j(xj),

(21) µ̂
(t)
a→j(xj)

∼=
∑
x∂arj

ψa(x∂a)
∏

k∈∂arj
µ
(t)
k→a(xk),

where ∂jra means in the neighbourhood of node j except for node a, and ψ is a parity check
function.

It is important to note that the above are normalised distributions and therefore writing
the partition function Z explicitly is negated by using ∼= to denote that the BP equations
conform to equality up to a normalisation. Additionally, when ∂j r a is an empty set, then
µj→a = 1

|X| and when ∂ar is empty, then µ̂a→j = ψa(xj).

After the final iteration, BP estimates the marginal distribution for variable i is given
from the set of all incoming messages and the BP estimate is finally given as

(22) µ
(t)
i (xi) ∼=

∏
a∈∂i

µ̂
(t−1)
a→i (xi).

The benefit of BP over other message-passing algorithms is that it computes exact
marginals on tree-graphs. Considering a complete bipartite graph, as described in section
1.0.1, passing messages through this graph would loop. However, despite the loops, BP can
be used to compute the marginals exactly on such a graph.

1.1.2. The Ising Model.
As an example of BP, consider the one-dimensional Ising model [17]. The variables are Ising
spins σ = (σ1, ..., σN ), where each site is associated with a random variable given the value of
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either +1 for spin-up or -1 for spin-down. Their joint distribution takes the Boltzmann form
as

(23) P(σ) =
1

Z
exp {−βE(σ)} , E(σ) = −

N−1∑
i=1

σiσi+1 −B
N∑
i=1

σi.

To compute the marginal probability distribution, three incoming messages towards the cor-
responding node are used, which represent their contribution to the marginal probability
distribution. Therefore, these are defined as

(24) µ̂j←(σj) =
1

Zj←

∑
σj+1...σN

exp

β
N−1∑
i=j

σiσi+1 + βB

N∑
i=j+1

σi

 ,

(25) µ̂→j(σj) =
1

Z→j

∑
σ1...σj−1

exp

{
β

j−1∑
i=1

σiσi+1 + βB

j−1∑
i=1

σi

}
.

Since these messages are probability distributions, and understanding that they are to be
normalised, Z→j and Zj← are set by the conditions µ̂→j(+1) + µ̂→j(−1) = 1 and µ̂j←(+1) +
µ̂j←(−1) = 1. Therefore, like previously, ∼= is used to mean that there is equality up to
the normalisation. Therefore, by rearranging the summations over the spins, the marginal
probability distribution can be written as

(26) P(σ) ∼= µ̂→j(σj)e
βσj µ̂j←(σj).

Each factor in this equation is a message sent to j from the functional nodes that are connected
to variable j, where each message coincides with the marginal distribution of σj , and therefore
each neighbouring node to j is the distribution of all prior messages from it’s neighbour. The
decomposition of this behaviour means that the messages can be computed iteratively, and
allows all marginals P(σj) to be computed in linear time.

1.2. Applying Belief Propagation on the Assignment Problem.
The application of BP on AP closely follows the general message passing rules previously

discussed [17] [3] [2]. Note that node i corresponds to set V1, and node j corresponds to set
V2. Therefore it can be explicitly written, that the equation for updating messages in the
Assignment problem is:

(27) µi→e(me) ∝
∑
me
ê 6=e

I

(
me +

∑
ê→i

mê ≤ 1

) ∏
ê→i

ê=(k,i) 6=e

µê→j(mê),

(28) µe→i(me) ∝ µ̂j→e(me)e
−βme(we−2γ),

where I(s) is the indicator function, and is such that I(s) = 1 if s is true, and zero otherwise.
These equations from subset V1 to V2 can be inverted to receive messages from subset V2 to
V1. The introduction of a cavity field hi→e that parametrises the message µi→e(me) is possible
since variables me take a value of either 0, or 1, and can therefore be parametrised by a single
real number [17] [20], giving

(29) hi→j = γ +
1

β
ln
µi→e(0)

µi→e(1)
,
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(30) hj→i = γ +
1

β
ln
µj→e(0)

µj→e(1)
,

(31) hi→j = − 1

β
ln[e−βγ +

∑
ê→i

e−β(wê+h
k→j)],

(32) hj→i = − 1

β
ln[e−βγ +

∑
ê→i

e−β(wê+h
k→i)].

Therefore the marginal distribution of the variable me is parametrised as

(33) µ(me) ∝ exp[−β(we − hi→e − hj→e)me],

and for when β → +∞ and γ → +∞:

(34) hi→e = min
ê→i

ê=(k,i)6=e

(we − hk→ê).

Notice that e−γ is a soft constraint, and when γ →∞, the distribution concentrates on perfect
matching. When β → ∞, the distribution concentrates on the minimal cost assignment.
Therefore, recovering the ground state of the optimisation problem in the double limit with
γ →∞ and then β →∞. Finally, node i is matched using edge ê in either two ways, where

(35) e∗ = arg min
ê→i

ê=(k,i) 6=e

(we − hk→ê),

or equivalently, the edge e = (i, j) is occupied if

(36) we ≤ hi→e + hj→e.

Using this method, the equation can be used to solve a specific instance of the problem by
utilising BP message-passing. The programmatic structure for BP in the Assignment problem
has been previously structured in references [2][3]; therefore, already giving a foundation for
the algorithm to be written.

As previously stated, it has been proven that BP can solve marginals in tree-graphs
exactly, though it is no secret that the AP is not locally tree like. However, BP has been
proven by contradiction to converge to an optimal solution in polynomial time. Thus, BP has
been used to compute the optimal configuration in the AP using the replica symmetric cavity
method.

A short analysis on this projects application of BP on the Aztec diamond, and the
efficiency is given in Appendix A.
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CHAPTER 4

Frozen region on the randomly weighted Aztec diamond

1. The Partition Function

A uniform tiling measure is such that all tilings are equally weighted. Now consider the
Random Dimer Model (RDM), where the given graph, G(V, E), is such that the vertex set is
given as |V| = 2N and the edge set is given as E ⊂ V × V. Each edge e is associated to a
weight we. It is assumed that all we to be i.i.d. with distribution

(37) ρ(w) = exp [−w] .

Each covering is assigned a cost E[D]:

(38) E[D] =
∑
e∈D

we.

Then, a probability proportional to the Gibbs weight e−βE[D] is associated to D so that the
partition function is introduced as

(39) Z(β) =
∑
D
e−βE[D].

Therefore, Z(β) is the partition function of the probability distribution of the dimers, and
where β is the inverse temperature. By setting β → 0, all dimer coverings have the same
weight. This of course means that the partition function Z(0) is the number of all possible
dimer coverings on graph G [6].

The assumption taken is that the weights we are identically distributed random variables
with a continuous probability density ρ(w), and also assume that more than one dimer covering
is possible. The ground state is to be the optimal dimer configuration and is taken as the
dimer covering D∗ with the minimal cost as

(40) E[D∗] = min
D

E[D] = − lim
β→∞

β−1 lnZ(β).

Evidently, β, though fictitious, determines the probability of the configuration outcome, and
while setting β to zero gives a uniform distribution, setting β →∞ gives the zero temperature
limit, where the temperature T = 1

β - which is the ground state, and therefore the minimal

costing configuration of the dimer.

2. The properties of the Aztec ground state

Running Belief Propagation (BP) over the randomly weighted Aztec diamond k = 1000
times for n = 5, 10, 20, 30, 40 and 50, the frequency of edge occupancy fe was stored as a
vector, where for edge e = ij the edge occupancy

(41) me =

{
1 if edge e is occupied,

0 otherwise (i.e., e is not occupied)
,
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Figure 1. Dimer covering of the ground state of a randomly weighted Aztec
diamond of order 50.

such that if an edge e was occupied in instances k, the edge frequency fe = k, and if edge e
was never occupied in any instance k, the edge frequency fe = 0.

Recall that the ground state D∗g is defined such that the cost of the dimer covering is
the minimal cost of all possible dimer coverings, and that this optimal configuration is almost
certainly unique. The use of random weights can be regarded as noise upon each edge of a
weighted lattice.

An example of an Aztec diamond of n = 5, Figure 1, is a single instance of the ground
state in a randomly weighted, thus unique, Aztec diamond. Notably there remains a uniform
formation of edges at each corner boundary, and a higher fluctuation of the four types of
dominoes towards the centre. Of course, neither Figure 1 nor an optimal dimer covering for
n arbitrarily large, i.e., Figure 2, would suffice in order to state the effect random weighted
edges has on the Arctic region.

2.1. Mean and variance in the ground state.
To determine the effect of a random weighted edges on the Aztec diamond, consider the

frequency of edges fe to be used to compute both the mean and variance of e. fe is utilised
in computing the mean occupancy m̄e simply by taking m̄e = fe/k ∀e.
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Figure 2. Dimer covering of the ground state of a randomly weighted Aztec
diamond n = 200.

By replacing fe with m̄e, each edge is a probability measure of the edge occupancy, such
that

(42)
∑
j∈∂i

Pij = 1,

meaning that for every node j in the neighbourhood of node i, ∂i, there is an edge e with
their cumulative sum of probabilities equal to one; therefore, for every dimer covering one
of these edges must be occupied. The edge probability for the ground state in the centre in
Figure 3 (A) and at the boundary in Figure 3 (B) shows that the probability in the centre of
the lattice leans towards edges having a uniform probability, while towards the boundary of
the lattice the occupied edges become increasingly deterministic. From Figures 1 and 2, and
the mean state a possibility of a phase change, the variance from me is used to observe the
limit shape on the lattice.

(43) V ar[e] =
1

k

k∑
e

m2
e −

(
1

k

k∑
e

me

)2

,

is used so that V ar[e] = 0 if the edge is either always occupied or never occupied and non-zero
otherwise. It is now possible to identify the effect random weights have on the Arctic region.
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(a) Centre of the lattice.

(b) Western boundary of the lattice.

Figure 3. Probabilities of edge occupancy at the centre and at the boundary
of the Aztec diamond lattice for n > 10.

Figure 4 shows the variance of each edge for n = 50, where the green circle represents
the Arctic circle with the radius of n

√
2 as expected when n is amply large in a one-periodic

weighted Aztec diamond. Evidently, the temperate region in the randomly weighted Aztec
diamond seems to expand towards the boundaries more-so than what would be expected in a
one-periodic weighted Aztec diamond.

Comparing the results of the variance of all edges for n = 5, 10, 20, 30, 40, and 50 in
Figure 5, it becomes evident that the increase of size of the randomly weighted Aztec diamond
has an increase in edge variances that tend to zero, respective to the size. Establish that an
edge should only be considered frozen if and only if the V ar[e] = 0 then the frozen edges of
a randomly weighted Aztec diamond are significantly smaller than the one-periodic weighted
Aztec diamond, with the percentage of frozen and liquid edges given in Table 1.

Ultimately, there is evidence pointing at an increase in the Arctic region of a randomly
weighted Aztec diamond as n increases. However, it does not appear that it will converge to
n/
√

2 as expected in the one-periodic weighted Aztec diamond. The limit shape of a randomly
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Figure 4. Variance of e on an Aztec diamond lattice of n = 50, where the
colour gradient represents the value of the variance, such that the darker the
edge the closer the variance is to approaching zero. The green circle represents
the Arctic circle found in the one-periodic weighted Aztec diamond - the radius
gets arbitrarily close to n/

√
2 when n is sufficiently large.

Order Frozen region (%) Liquid region (%)
5 0% 100%
10 0% 100%
20 0.1875% 99.8125%
30 1.11111% 98.88889%
40 1.59375% 98.40625%
50 2.19% 97.81%

Table 1. Percentages of edges considered to be frozen or liquid for various
orders n in the ground state.
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(a)

(b)

Figure 5. Variance of cumulative Aztec diamonds of different orders in the
ground state. (B) focuses on the variance close to zero.

weighted Aztec diamond in the ground state is most certainly distorted by some variation of
noise ε. The impact of ε seems to give a uniform growth of the Arctic circle, where the
structure and size of the Arctic regions at each polar cardinal direction are indistinguishable
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from one another - therefore, the randomly weighted Aztec diamond does contain an Arctic
region.

2.2. Excitations.
An excitation may be caused on the optimal configuration D∗g by taking an edge ê that occurs
in D∗g and either cutting ê, or by increasing the weight wê to ensure that it could not occur
in the ground state.

Since there are two areas of interest in the ground state of the Aztec diamond, the
Arctic region and the Arctic circle, two separate excitations are induced in retrospect to their
phases to obtain two new optimal configurations:

(1) An excitation in the liquid region gives a new optimal configuration D∗l ,
(2) and an excitation in the frozen region gives a new optimal configuration D∗f ,

in which both optimal configurations of the excitations D∗f and D∗l are of a higher cost with
respect to D∗g . The difference between the cost significantly depends on the location of the
excitation, and it is expected that D∗f tends to have a higher cost than D∗l as an excitation in
the Arctic region would disrupt the deterministic behaviour of the dimer covering, i.e., Figure
6.

2.2.1. Path of the excitations.
The excitations cause self-avoiding single cycles with varying excitation lengths sr, where r is
the region in which the excitation occurs, is evaluated by isolating the edges effected by the
excitation through the symmetric difference between the ground state and the excited state,
where

(44) Sl = {e ∈ E : D∗g4D∗l }, sl =
|Sl|
2
,

(45) Sf = {e ∈ E : D∗g4D∗f}, sf =
|Sf |

2
,

and so ê ∈ Sl is for the excitation caused in the Arctic circle and ê ∈ Sf is for the excitation
caused in the Arctic region.

An example of these cycles obtained through the excitations of the ground state D∗g
found in Figure 6 are shown in Figure 7. By plotting s for k iterations, the difference between
the effect of the excitations in both regions is seen in Figure 8. The maximum path length
exhibited from an excitation in the liquid region sl(n) and in the frozen region sf (n) increase
with n, where sr(n) is shown to depend on the location of the excitation, as anticipated. The
minimum length min sl(n) = 2 ∀n, while min sf (n) grows with a increase in n.

It is shown in Table 1 that for n = 5, 10 each edge e has a non-zero variance, and
therefore neither of them exhibit a frozen region. Thus, by comparing the behaviour of the
curve in Figure 8 (A) and (B) for n = 5, 10, both sizes prove to share the value for minimum
length at s = 2. However, though the variance at the boundaries are non-zero, they do in fact
approach zero, causing sf (5), and sf (10) to almost always be larger than sl(5), and sl(10)
respectively.

Moving on to Aztec diamonds of order n = 20, 30, 40, 50, the behaviour of sl(n) and
sf (n) become progressively obvious. An excitation caused in the Arctic circle are almost
assuredly producing small values for sl(n) compared to the relative size of the Aztec diamond
- even for n = 50 they still exhibit the minimal possible length s = 2. Evidently, as s increases,
a power-law tail develops indicating that there is a critical point induced by the finite size
of the system. Whereas, an excitation caused inside the Arctic region will mostly contain an
arbitrarily large sf (n).
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(a) Excitation caused by removing an edge with a non-zero
variance towards the centre of the Aztec diamond.

(b) Excitation caused by removing an edge with zero vari-
ance towards the boundary of the Aztec diamond.

Figure 6. Dimer covering of excitations caused by removing an edge either
with zero variance found at the boundary of the Aztec diamond, or by remov-
ing an edge with a non-zero variance found towards the centre of the Aztec
diamond.
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(a) Excitation in the liquid region.

(b) Excitation in the frozen region.

Figure 7. Paths caused by excitations plot from the differences between D∗g
and D∗l , and D∗g and D∗f .
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(a) Probability P[sl > s].

(b) Probability P[sf > s].

Figure 8. Probability of the length of the self-avoiding single loops sr
caused by excitations in the corresponding liquid and frozen region for n =
5, 10, 20, 30, 40, 50 in log-log.
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Figure 9. Line fitting for lnn vs. ln s̄f (n).

Given the analysis of Figure 8 (A), the probability P[sl > s] can be rewritten according
to scaling laws for critical systems [6] as

(46) P[sl > s] = s−ζg,

where g is some scaling function constant for large n and finite s. Therefore, to determine the
scaling exponent ζ > 0, the next step is to take the natural logarithm of equation 46, giving

(47) lnP = −ζ ln s+ ln g,

which allows for P to be fit on the tail with a linear function, for n = 50 with 10 < s < 100,
giving a numerical estimation for ζ = 0.716 and g = 1.842.

A different scaling behavior is observed for the excitations in the frozen region, see
Figure 8 (B). Taking the natural logarithm of the size of the system n, and plotting against
the natural logarithm sf (n) for all n over k iterations to get the mean path distance s̄f (n),
gives a scaling law in the form

(48) s̄f ∼ nα,

where α is the scaling exponent. A fit gives the scaling exponent as α = 1.287, i.e., see
Figure 9. With the scaling exponent α, it is now possible to plot the cumulative distribution
from Figure 8 (B) for the excitations in the frozen region by taking s/nα vs P[sf > s] in
Cartesian coordinates, in Figure 10, and see that, defining X = sfn

−α, for n arbitrarily large,

P[X > x]
n→+∞−−−−−→ ρ(x).

Finally, almost always, the cost of the optimal covering for the excited states abides
to E[D∗l ] < E[D∗f ], and so over k iterations, for k large, the average costing for D∗l and D∗f
assuredly follows

(49) Ē[D∗g ] < Ē[D∗l ] < Ē[D∗f ].
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Figure 10. Cumulative distribution for n = 20, 40, and 50 after scaling.

In terms of the overall cost of the dimer covering, evidence from the data proved to show
that as n increases, the ratio between the mean cost of the ground state D̄∗g and the average

cost between the excited states, D̄∗l and D̄∗f , declined - suggesting that the average cost for

the optimal configurations converge while following the constraint in equation 49 (the data is
shown in Appendix (B)). This would indicate that the average cycle length s̄r(n) does not
increase at a rate ample enough to negatively impact the optimal cost in the excited states.

2.2.2. Mean and variance of the frequency occupancy in the excitations.
Following the steps highlighted in section 2.1 in determining the mean and variance of D∗g , it is
possible to analyse the same frequency of occupancy in the excited configurations. Explicitly,
the frequency of the edge occupancy in equation (41) can be used to determine the mean and
variance in the optimal dimer cover of the excited states D∗l and D∗f .

For the excitation in liquid region, D∗l , it was previously stated that sl(n) occurring in
the liquid region are often arbitrarily small; therefore, there is already the assumption that
the cost E[D∗l ] will on average be a small increase on E[D∗g ]. By removing an edge e attached
to node i within the limit shape, the assumption would be that since any edge attached to
node i has an almost equal probability of occurring in the ground state, then any such edge
has an almost equal probability of being cut. Therefore, m̄e attached to node i will still
remain almost uniform after k iterations of excitations, i.e., Figure 11. Since the probabilities
of the edge occupancy after excitations in the liquid region remain almost equal to that of
the ground state, and due to the limiting length of the excitation paths sl(n) in this region
- the variance would be approximately indifferent to that in the ground state. This effect is
shown in Figure 12. Hence, the variance of D∗l for k iterations for n = 5, 10, 20, 30, 40, and 50
in Figure 13.

The variance between D∗g and D∗l remain almost exact, while there are variance fluctua-
tions between the edges within the limiting shape, a comparison of the variance of cumulative
Aztec diamonds in the ground state shows no difference in the frozen region between the
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(a) Edge probabilities for the ground state.

(b) Edge probabilities for the excited state in the liquid
region.

Figure 11. Edge probabilities for edges in the neighbourhood of node i =
3241. Despite the introduction of excitations around node i, the edge proba-
bilities remain almost equal.
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Figure 12. Variance of the edge occupancy frequency of order n = 50 after
excitations were caused in the liquid region.

ground state up until n = 40, Table 1, and the excitations in the liquid phase shown in Table
2. For n = 50, there was an unexpected increase in the frozen region from an excitation caused
in the liquid region. This increase is in fact extremely small, and may be considered extremely
unlikely to happen or an error due to the amount of iterations k; therefore if k >> 1000 this
discrepancy may disappear. It should also be considered that perhaps the excitations in the
Arctic circle force the Arctic region to expand when n ≥ 50 - perhaps this could be looked
into upon further study.

The effects of excitations inside of the Arctic region for the cumulative dimer coverings
of D∗f run for k iterations again follows the procedure explained in section 2.1. Therefore,

when k is sufficiently large, Ē[D∗f ] has proven to be larger than Ē[D∗l ] since s̄f > s̄l.
To understand why the cost is almost always larger, consider the mean edge occupancy

in Figure 14 (A). Notably, an excitation caused at polar West will produce a path that
extends at the boundary towards the polar North with certainty as V ar[e] = 0. In fact, as
the excitation is caused by removing an edge connected to a node slightly North of the polar
West boundary, sf (n) for n ≥ 20 moves towards the next closest polar cardinal point until
reaching the boundary of the limit shape. The path will purposely avoid moving through the
concurrent frozen region in which the excitation is located (in this case polar West), limiting
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(a)

(b)

Figure 13. Variance of cumulative Aztec diamonds of different orders for
excitations caused in the liquid region. (B) focuses on the variance close to
zero.
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Order Frozen region (%) Liquid region (%)
5 0% 100%
10 0% 100%
20 0.1875% 99.8125%
30 1.11111% 98.88889%
40 1.59375% 98.40625%
50 2.22% 95.42%

Table 2. Percentages of edges considered to be frozen or liquid for various
orders n after excitations in the liquid region.

Order Frozen region (%) Liquid region (%)
5 0% 100%
10 2.25% 97.75%
20 4.6875% 95.3125%
30 3.389% 96.611%
40 4.125% 95.875%
50 4.58% 95.42%

Table 3. Percentages of edges considered to be frozen or liquid for various
orders n after excitations in the frozen region.

any disruptions towards uniformly orientated edges; thus, the path towards polar South will
either move at the boundary or parallel to the boundary with equal probability until reaching
the liquid region - leaving a path of zero variance directly in-between them. Both paths
generally end between polar North and polar South, and they join together by finding a path
with minimal cost through the Arctic region with equal probability, leaving the mean edge
occupancy frequency inside the Arctic circle with insignificant fluctuations. This behaviour
is seen in Figure 14 (B) where the variance shows the deterministic nature of path sf (n) with
n arbitrarily large.

Turning to Figure 15, there most certainly is an increasing effect on the Arctic region
for 10 ≤ n ≤ 50. n = 5 would not have been expected to have developed frozen edges as the
variance is more uniform across the lattice, and therefore the excitations are unbounded by
any limit shape. Strangely though, both n = 10 and n = 20 have a considerable increase in
frozen edges. The reason for this is not immediately evident, and this could yet be another
error due to the number of iterations k = 1000 - though a possibility is that between the
Arctic region into the Arctic circle, there is a smooth transition in the incremental increase
in variance for these orders. For n = 30, 40, 50 the increase in the frozen region seems to have
more structure than the lower orders. Table 3 shows no immediate pattern of the effect of
excitations in the Arctic region; if there is any pattern that alters the size of the Arctic region,
higher orders would have to be studied to formulate some composure and see that if perhaps
the Arctic region will converge, or if there is merely a fluctuating increase as n→∞.
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(a) Mean edge occupancy for n = 50.

(b) Variance edge occupancy for n = 50.

Figure 14. Mean and variance of the edge occupancy frequency of order
n = 50 after excitations were caused adjacent to the Western boundary.
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(a)

(b)

Figure 15. Variance of cumulative Aztec diamonds of different orders for
excitations caused in the frozen region. (B) focuses on the variance close to
zero.
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CHAPTER 5

Conclusions and perspectives

It has been evident for some time that the properties of dimer coverings hold consider-
able amount of attention, especially in statistical physics. Different approaches, or different
algorithms have proven to be valuable assets. It is for this reason that this paper concentrated
on using the Belief propagation (BP) on the unexplored randomly weighted Aztec diamond
to analyse the unique behaviour of such a lattice.

The preliminary idea behind this paper was to take BP and apply the algorithm on the
randomly weighted Aztec diamond to determine the impact on the already well documented
Arctic circle. The existence of the Arctic circle became apparent in the one-periodic weighted
case, and since then there have been various studies into different weighting methods on the
Aztec diamond - though the randomly weighted Aztec diamond seems to be missing from the
literature.

It was first proven that BP does converge to the optimal configuration on the Aztec
diamond lattice in polynomial time - and at a far more efficient rate compared to that of
general solvers like the one provided by Python’s NetworkX. Any analysis on a randomly
weighted Aztec diamond with an arbitrarily high order n would otherwise have been impossible
without BP.

The idea of random weights on the Aztec diamond can correspond to noise on the lattice.
It was shown that in the ground state, such that the optimal configuration is that of minimum
cost, the Arctic circle on the randomly weighted Aztec diamond still existed; however, it
differed in terms of size compared to that of the one-period weighted Aztec diamond. The
Arctic regions at the cardinal points exhibited a reduction in size; thus, as the Arctic regions
became limited and the Arctic circle proved to expand towards the boundaries contorting the
limit shape. However, the expanse of the limit shape proved to be structured, such that it
was still uniform in appearance. The exact shape and size of the convergence of the Arctic
circle on a randomly weighted Aztec diamond is yet to be shown, but leaves promise to be
studied further.

Furthermore, taking the ground state of the Aztec diamond and causing excitations
proved to have an effect on the Arctic region, and was dependent on the location of the
excitation. The excitations would cause self-avoiding loops that would have a tendency to
avoid getting close to the Arctic regions as much as possible. Excitations caused in the liquid
region of the Aztec diamond would often contain very small self-avoiding loops regardless of
the order n - this meant that the excitations in the liquid region would have an insignificant
impact on the Arctic region. As for the excitations in the frozen region, the behaviour of
the self-avoiding loops showed similar characteristics as those in the liquid area, such that,
the self-avoiding loops would attempt to avoid the frozen edges. To do this, one path would
deterministically follow one adjoining boundary until it reached a variation in structure, the
Arctic circle, while the other path would have an equal probability to follow two routes in the
opposite direction at the boundary or adjacent to the boundary. These paths would then join
ends by connecting though edges with minimal costing in the Arctic circle. Since one path
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was deterministic, this meant that the variance of edge frequency in k = 1000 iterations on
this path would go to zero, meaning the path was frozen. As a result, excitations caused in
the Arctic region would increase the amount of frozen edges, though the Arctic circle would
lose its shape.

There is certainly more to achieve in the randomly weighted Aztec diamond, and pos-
sible extensions to this paper that may be considered, such as finding out when n→∞ in a
randomly weighted Aztec diamond, should the limit shape expect to converge? If so, what
to? What is the relationship between the convergence of the radius of the Arctic circle in the
one-periodic weighted Aztec diamond and the randomly weighted Aztec diamond? This of
course would be computationally difficult, and other methods would have to be explored to
find the solutions. Additionally, the data could be reconstructed for k >> 1000 - doing so
would either alleviate possible errors, or formulate the conjuncture that the excitations in the
Arctic circle may in fact impact the Arctic region for large n.
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APPENDIX A

Belief Propagation and NetworkX

Before studying the random dimer problem on the Aztec diamond model, a comparative
study was performed between BP and Python’s NetworkX algorithm for finding optimal
matchings [9].

1. The NetworkX library

NetworkX is simply a Python package enabling the user to create and manipulate com-
plex networks in order to study the dynamics and structure. Using this to first solve the AP,
was used as benchmark of our BP implementation – specifically on the Aztec diamond.

NetworkX contains two algorithms that can be used to solve the Assignment problem;
however, one of them can only be utilised for complete graphs. Though this functionality works
perfectly well for the Assignment problem, when considering the Aztec diamond lattice, this
algorithm would be inadequate. The functioning algorithm to find the ground state of both
the Assignment problem and the Aztec diamond is called max weight matching. It computes
the maximum-weight matching of graph G, where the maximum-weight of the matching is
the sum of all edge weights in a dimer covering. For the Assignment problem, the cardinality
can be set to the max - such that, the algorithm achieves perfect matching. Based on the
blossom method and the primal-dual method, and is expected to take time O(n3), where n
is the number of nodes [9].

Since the algorithm formulates the sum of all weights so that the solution is the max-
imum weighted graph, the weights on all edges e must be inverted, either by multiplying e
by −1, or by finding the edge with the largest weight w∗e and performing the following for all
edge weights we

(50) w∗e − we.

Both methods result in the inverted weights on the graph, thus configuring the algorithm to
find the optimal costing of the graph.

2. Belief Propagation vs NetworkX on the Aztec Diamond

Take an Aztec diamond lattice, as described in section 1.3, of order n and randomly
apply weights with the exponential distribution (37), to every edge e. Running either the
NetworkX algorithm or BP would both result in the ground state.

BP was specifically implemented for this project in Python by utilising the method
structured by Bayati [2]. By implementing the cavity method given in Chapter 3 section 1.2,
where if we ≥ hi→e + hj→e the edge is matched, BP proved to converge regardless of n. To
grasp the sizes of the Aztec diamond lattice used, refer to Table 1.

Taking the average computation time for solving the optimal matching on the Aztec
diamond via NetworkX and BP over a multitude of iterations k, Figure 1 displays a significant
increase in computational time efficiency on a graph with n > 10 by utilising BP, notably as
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Figure 1. Average computational time comparison between NetworkX and
BP on the Aztec diamond.

Order no. Nodes no. Total Edges no. Matched Edges no. Possible Coverings
5 60 100 30 = 32768
10 220 400 110 ≈ 3.60× 1016

20 840 1600 420 ≈ 1.64× 1063

30 1860 3600 930 ≈ 9.52× 10139

40 3280 6400 1640 ≈ 6.99× 10246

50 5100 10000 2550 ≈ 3.58× 10383

Table 1. Details of the size of the graph according to the order.

discussed in Chapter 2 section 1.1. Therefore, BP on the Aztec diamond does converge at a
faster rate that NetworkX in time t∗, which is polynomial in the size of graph.
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APPENDIX B

Table: average cost differences between the ground state and
excitations

n Ē[D∗g ] Ē[D∗l ] Ē[D∗f ] Ē[D∗g ]4Ē[D∗l ](%) Ē[D∗g ]4Ē[D∗f ](%) Ē[D∗l4Ē[D∗f ]](%)

5 18.30671 19.06998 20.37800 4.08417% 10.7086% 6.63164%
10 67.31310 68.00445 72.14728 1.02182% 6.93269% 5.91192%
20 257.6363 258.2948 268.8162 0.255236% 4.24724% 3.99211%
30 569.1878 569.8250 586.6994 0.111897% 3.02999% 2.91812%
40 1002.241 1002.922 1026.855 0.0679111% 2.42608% 2.35818%
50 1557.971 1558.643 1589.618 0.0431422% 2.0109% 1.96776%

Table 1. A comparative table between the average cost on the randomly
weighted Aztec diamond in the ground state and excitations.
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[18] Marc Mézard and Giorgio Parisi. Replicas and optimization. Journal de Physique Lettres, 46(17):771–778,

1985.
[19] Do Norman. The art of tiling with rectanges. https://users.monash.edu/ normd/documents/Mathellaneous-

07.pdf, 07/08/2021.
[20] Giorgio Parisi, Gianmarco Perrupato, and Gabriele Sicuro. Random-link matching problems on random

regular graphs. Journal of Statistical Mechanics: Theory and Experiment, 2020(3):033301, 2020.
[21] James Propp. Dimers and dominoes. arXiv preprint arXiv:1405.2615, 2014.
[22] James Propp. Enumeration of tilings. Handbook of Enumerative Combinatorics, pages 541–588, 2014.
[23] James Propp, Noam Elkies, Greg Kuperberg, and Michael Larsen. Alternating sign matrices and domino

tilings. arXiv:math/9201305, pages 111–132, 1992.
[24] Sherpal. Aztecdiamond. GitHub repository, https://github.com/sherpal/AztecDiamond, 20/08/2021.

43





Self-reflection

Guidance in the Research methods materials

Searching for literature. I started with the provided resources and kept comprehen-
sive notes of all the information I thought relevant from literature and supervisor meetings.
I would check the citations of relevant literature for parts I found I thought useful to expand
my knowledge, i.e., the replica symmetric cavity method. I felt that this was extremely useful
at times, but could also be detrimental and lead to material containing information irrelevant
to the project - meaning I should have been more selective.

Tools for doing research. Note-keeping in general was the most important habit I
kept on this project. This notebook is now a collection of information, data, and ideas - all
of which I could expand upon with my supervisor. Besides the tools applied to me by KCL,
such as it’s library catalogue; I heavily utilised Python quite efficiently during this project.
The tool I wish I did use was another graphing software - Python worked decently; however,
the graphical output could have been presented better.

Writing up and presenting your research. The writing process was the most dif-
ficult for me. Some days I could barely get a paragraph out, and on other days the data was
being tediously scaled in a way that was not presentable. These both took a lot of determi-
nation to overcome with success. I believe that through persistence I ultimately managed to
write about the relevant literature, my ideas, and results clearly, as well as present my results
and data extremely well.

Marking Scheme

Scientific quality. I believe the majority of the relevant material in the project scope
was covered. The methods in which I managed to obtain the data were all introduced in the
first two chapters of the project, and then implemented for the results in chapter 4, where I
could critically evaluate the results, and see that the results made sense. I even looked at the
likely hood of errors in the data when something looked out of place - I discussed the most
likely scenario, but also my own idea of what could be occuring if it is not an error. I believe
my code became less efficient overtime - by reducing computation time for 1 iteration by 60
seconds could have saved days in computational time. This means I could have had time to
study say the finite temperature limit.

Breadth. There are parts of this project connected to modules and lectures I had taken
at KCL, such a complex networks, statistical mechanics, and many body systems; however,
these modules consisted of only part of the foundation of the project. This was the first time I
have ever had to create any sort of algorithm, and none of my modules were computationally
heavy. When Belief propagation proved to be successful on the Aztec diamond, that was
probably the most satisfying moment during the project. As for an improvement, there was
certainly more I could have expanded the project to with ample time - to start, I would
definitely would have like to expand the project to study the finite temperature limit.
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Originality. The Aztec diamond has been amply studied with specifically weighted
edges, however there is no literature for the randomly weighted Aztec diamond. This meant
that I could take an approach that took the behaviour of the Aztec diamond on a previously
studied weighting system and compare it to the randomly weighted Aztec diamond. I was
fortunate to have a supervisor who had similar ideas of where the project could go and what
I should do, which made the project’s path smooth. I took my own initiative and decided
that it would be better to analyse higher order systems for the ground state and excitations,
rather than studying lower orders and then also studying the case in the finite temperature
limit. The results proved valuable - but I am unsure if I made the correct choice.

Presentation I believe the entire report was consistently well presented. I ensured my
choice of language was correct, notation correct, figure labels etc... were all correct, which
they are to the best of my knowledge. In terms of clarity, I think that I adequately defined
everything necessary that whoever reads this will understand the logical structure of the
project. References were clearly stated were I thought necessary, and the report was mostly
well structured. A change I would consider is small reordering of the final chapter - I do not
think what I did is wrong in terms of the organisation of analysis, but more I could have
maybe avoided a jump in the differing excitations.
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