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Abstract
This paper is separated into two chapters. The first chapter provides initial material for the

reader. This includes a brief introduction to statistical mechanics, along with its application to
combinatorial optimisation. The technique known as Belief Propagation, useful for studying

such optimisation problems, is then derived and applied to an example case. Statistical
Inference is later addressed, the reader being provided an outline of the subject. Finally

statistical inference is applied to dimer models, specifically the planted matching problem and
discussed in depth through a review of relevant previous work.

The second chapter contains my novel work. We consider the transition point between partial
and full recovery of a planted perfect matching in both the random regular graph of

coordination c and the square lattice by means of a Student-Teacher statistical inference
problem, with both graph structures being subject to varying levels of suppression of edges.

Previous work shows analysis of the transition for sparse graphs. We look to extend this work
and provide evidence for the similar behaviour we expect to be exhibited between the square

lattice and the random regular lattice of coordination c = 3. This is achieved by considering an
analytic approach, obtaining a boundary equation between partial and full recovery for the

random regular graph and then a numerical approach, providing graphical evidence of similar
behaviour.
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CHAPTER 1

Statistical physics, optimisation, and inference

1. Introduction

Complex systems often exhibit various states in which they exist. These states correspond to
different macroscopic properties to be exhibited by the system, many of which are the properties
we naturally experience. To illustrate this, take water as an example. Water can exist in
three states of matter1: in the form of ice as a solid, as a liquid at room temperature and one
atmosphere, and finally in an evaporated or gaseous form. All three states exhibit vastly different
behaviour. As a consequence, one may be tempted to imagine the changes on a macroscopic
level are reflective of possible changes at a microscopic level. This is however not the case. The
disparate properties of states of matter are solely due to the microscopic interactions between
the elementary components. Returning to our example, we know ice is formed if a body of water
is brought to a low enough temperature and evaporation is caused if that same body of water
is taken to a high enough temperature (keeping pressure fixed). In all cases the atoms of water
do not change, only the energy they have as temperature increases or decreases. Water is but
one example of complex systems in general; the nature of the interactions on a microscopic level
remain the same, yet by increasing parameters on a macroscopic level, we force macroscopic
properties to change drastically.

It is exactly this type of phenomena statistical physicists look to understand. Given a
complex system, we can use the concepts and methods developed in statistical physics to describe
not only the various macroscopic properties but also the location and details of the transitions
between states.

Statistical physics is primarily founded on two principal axioms. The first principal idea
is a comprehensive and detailed understanding of the microscopic interactions is not required
for a description of a system. Many complex systems undergo far too many interactions for it
to be feasible to know them all. Returning to the example of water, there are more than 1022

molecules in just a gram of pure water. Knowing the information of all interactions of just a
gram of water is a task well beyond the capabilities we currently have. The concept adopted
by statistical physics, is instead to assume the system at a microscopic level is too chaotic,
forcing an alternative purely probabilistic description. The system in question would then exist
in configurations, one for each possible outcome of the system at any given time. The second
principal idea is that the macroscopic descriptions described by the probabilistic basis occur as
a result of the law of large numbers. While on a microscopic level the details of each interaction
may differ, due to the sheer number of them, fluctuations are negated by each other and the
macroscopic descriptions ‘average’ out.

1It is well known that the phase diagram of water is actually very complicated, but we simplify here for the
sake of simplicity referring to the common experience.
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2. A probabilistic approach

To begin our probabilistic description we start by defining our configuration space Ω which
is the set of all possible configurations σ of our system. A weight function w : σ → w(σ) must
also be defined over our system. When referring to configurations, we often refer to specifically
the weighted configurations. The next step is to define a suitable cost or energy function,
E(σ) : Ω → R. This is any function taken from the set of observables, where an observable,
O : Ω→ R, is a function of the weighted configuration space. This definition allows for a variety
of energy functions to be used. At this point, let us assume there is no more information we know
about the complex system other than the weighted configuration space defined and the suitable
energy function chosen. It may seem insufficient knowledge but in most cases this assumption is
accurate as information about systems is often too difficult to collect. Furthermore a weighted
configuration space and a suitable energy function are all that is needed to define a probabilistic
description of our system. The only requirement our distribution must satisfy is that it does not
assume additional information about our system.

To avoid this, we must find the distribution p(σ) over the configuration space, given the
arbitrary constraint 〈E(σ)〉 = E ∈ R, on configurations σ, that maximises entropy. Entropy,
defined as:

(1) S[p] =
∑
Ω

p(σ) · ln
(

1

p(σ)

)
= −

∑
Ω

p(σ) · ln (p(σ))

is a measure of information or determinism in a system, where high entropy indicates low de-
terminism of events. To remove potential assumption about the distribution of events, by using
the principal of Maximum Entropy Inference2, we obtain the equation for the distribution that
maximises the entropy of the system, along with the partition function, Z:

(2) P (σ) =
1

Z
e−βE(σ) , Z =

∑
Ω

e−βE(σ)

We define β = 1
T to be the inverse fictitious temperature. Thus we see this form of the

probability distribution is similar to that of the Boltzmann distribution, where we have Z being
some normalisation constant. It is interesting to note if we take β → 0 the distribution of P
tends to a uniform distribution 3:

(3) lim
β→0

P (σ) =
1

|Ω|

If, on the other hand β →∞ we find the distribution tends to4:

(4) lim
β→∞

P (σ) =
1

|Ω0|
I(σ ∈ Ω0)

where we have defined Ω0 ∈ Ω to be the set of configurations that minimise the energy function.
What we find from this is in infinitely high temperature systems, each configuration becomes
equally as likely, but as temperature tends to zero, the probability distribution concentrates on
lower energy configurations and in the limit becomes uniform again, but is dominated by the
configurations that minimise the energy function.

2For a derivation, see Appendix 1
3For a derivation, see Appendix 2
4For a derivation, see Appendix 3



3. COMPUTATIONAL OPTIMISATION 7

3. Computational Optimisation

With the knowledge to implement a complex system in a purely probabilistic environment,
we can look to investigate characteristics of our systems in more detail. Three examples of
characteristics of a system one may wish to explore can be studied through the optimisation
problem, the evaluation problem and the decision problem. To be more precise:

• Optimisation problem: Obtains the configuration, σOPT of the system that minimises
the energy function E
• Evaluation problem: Evaluates the optimal cost, EOPT = E(σOPT ), of the energy

function for the optimal configuration
• Decision problem: determines whether there exists a configuration in the configuration

space with cost below a given value
The search for the solution to any one of these problems is not without its difficulties though.

As is the case with large systems, investigations like these can be tedious to do by hand, so we
employ the use of computational means to assist the process. This adds a new element to the
problem: not only is it necessary to solve the problem, but the formulation of the solution needs
to be considered so that it can be performed as an algorithm. To illustrate how this is done, let
us consider the problem of the Minimal spanning tree.

3.1. Minimal Spanning Tree. The Minimal Spanning Tree problem, or MST, is as fol-
lows: consider you are given an undirected graph G with vertex set V and edge set E , where each
edge, e ∈ E , is weighted with weight we ∈ W. The cost, E of a subgraph, Ĝ, is defined as the
sum of the weights on all edges in the subgraph: E(Ĝ) =

∑
EĜ
we. The optimisation problem is

simply to find the spanning tree T - the subgraph of G with vertex set equal to V and containing
no cycles - of lowest cost. A first approach may be to consider all the trees of graph G, calculate
the cost of each and compare them with each other to see which is the lowest, resulting in the
identification of T . After attempting this however, one will find for large graphs, simply identi-
fying all possible trees of a graph becomes a formidable task. Consider the complete graph with
N vertices. We know, from Cayley’s [13], the number of spanning trees in this complete graph
of N nodes is NN−2. This grows exponentially as N increases, so as a general solution for any
graph, this method isn’t a feasible option. Thankfully, computer scientists and mathematicians
have found faster and more efficient algorithms to solve the MST problem, one of which being
Prims Algorithm. Prim’s Algorithm, initially created by Vojtěch Jarńık, a Czech mathematician,
in 1930 but rediscovered by American mathematician and computer scientist Robert Clay Prim
in 1957, defines a tree from a graph using an algorithm on the edges of the graph. It starts by
choosing an initial vertex of the graph at random. This itself is a tree, T ′, and the algorithm
expands this tree iteratively, one edge at a time, until it is a minimum spanning tree, TMST . It
does this by, at each iteration, adding the edge of lowest weight connected to the tree T ′. After
each iteration we are guaranteed the size of the vertex set of T ′ increases by 1, so after N − 1
iterations, we are left with the minimum spanning tree, TMST . As pseudo-code, this algorithm
follows the structure:

MST Algorithm: find TMST on graph G = (V, E) with weight function ω by constructing
T ′ = (V ′, E ′):

(1) set V ′ = {0}, E = 0
(2) while V/V ′ 6= ∅
(3) Z = {v = (v1, v2) ∈ V | v1 ∈ V ′, v2 ∈ V/V ′}
(4) e = minz∈Z w(z) = w(z′)
(5) E+ = e,V ′ = {}
(6) return TMST = T ′
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The benefit of being able to write the algorithm in pseudo code is that the algorithm can then
be translated into a computing language. We also note the problem is of polynomial complexity
class as the run time is bounded above by N3/6, N being the size of the vertex set of G.

4. Belief-Propagation

There are many methods one can use to allow different systems to be studied, but one very
useful way is called Belief Propagation. It is dependent upon certain conditions of the system,
one of which is the necessity for the solution to behave as a factor graph.

4.1. Factor Graphs. In their most rudimentary form, factor graphs are a graphical rep-
resentation of polynomials. Consider we have a factoriseable polynomial P (x) =

∏
i pi(x) where

each factor pi is itself a polynomial of a number of the entries of x. It is worth noting these
factors do not necessarily have to be irreducible. We can construct a factor graph F representing
P (x) by formalising the structure of the graph in the following way:

• Variable nodes - these are nodes of the graph, indicated as circles, that represent the
variables of the polynomial - the set of variables of P (x) is {xi |xi ∈ x} so the set of
vertices of F will have the same size
• Factor nodes - these, indicated as squares, represent each distinct factor of our polyno-

mial P (x), the number of which will be the same as the number of factors.
• Edges - edges exist only between variable nodes and factor nodes, adjacent nodes indi-

cating whether a factor is dependent upon a variable or not.
From this definition we note factor graphs are inherently bipartite graphs as factors cannot
connect to factors and variables cannot connect to variables.

4.2. BP messages. The reformulation of polynomials into factor graphs can be used on
probabilities, specifically probabilities which can be factorised5. Suppose we have a system with

configuration space x = (x1, . . . , xN ) ∈ Ω =
∏N
i=1 Ωi defined through the probability function P

with M factors:

P (x) =
1

Z

M∏
a=1

fa(x∂a)(5)

where, considering the factor graph F of P , ∂a = {xi |xi is adjacent to factor node a}. To
understand the effect each node has on the system, from this distribution, we can look to the
marginal distributions of each variable node xi for such a complete description. More specifically
we look for:

Pi(xi) =
∑
Ωk 6=i

P (x) =
1

Z

∑
Ωk 6=i

M∏
a=1

fa(x∂a)(6)

By direct calculation, this may not seem at first easily solvable and in many cases an exact
solution is not analytically possible. It is however possible to approximate certain distributions,
using an exact result for a particular instance of graph topology.

For us to derive an exact solution, let us assume the graph is in fact a tree. This implies
there are no loops or cycles in our factor graph. Suppose then we choose, arbitrarily, variable
node i, which could lie anywhere in our tree. Variable node i has neighborhood ∂i of n factor
nodes {aj}j∈{0,...,n}. Our assumption of the topology of our graph being a tree allows the graph
to be partitioned into sub trees. Take factor node aj in ∂i. This factor node connects to i and
also could connect to other variable nodes ’behind’ it. We use the term ’behind’ to classify the
set of nodes, variable and factor alike, of the graph with shortest path to variable node i passing

5For an example, see Appendix 4
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Figure 1. Example of division of factor graph into separate subtrees Ti for
each factor node ai ∈ ∂i

through factor node aj . But our assumption constraint, preventing loops or cycles, means no
nodes behind aj connect to nodes behind other factor nodes ak 6=j in the neighborhood of i. To
put it another way, if we remove the edges connecting variable i to its neighbors, we are left with
n independent sub trees with roots aj . As this graph is representative of our probability function,
we see there exists a factorisation of P (x) which groups the factors depending on which variables
they are functions of - more specifically, these groups are non intersecting in their variables, aside
from variable i upon which they all connect to in the graph, meaning they all use i as a variable.
Formally, this can be expressed as follows. Let us define Tj = (VTj , ETj ) to be the sub trees
behind respective root factor nodes aj ∈ ∂i. As the sub trees are independent of one another,
we can define the polynomials:

Tj(xj) =
∏
Aj

(fa(x∂a)) =

∏
Aj

fa

 (xj), Aj = {factor nodes in Tj}(7)

⇒ P (x) =
1

Z

∏
j∈∂i

Tj(xj)(8)
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such that xj is the set of variables xi ∈ x which are in tree Tj . This allows the summation to
easily factorise over the separate sub tree polynomials:

Pi(xi) =
∑
Ωk 6=i

P (x) =
1

Z

∑
Ωk 6=i

∏
j∈∂i

Tj(xj)(9)

=
1

Z

∑
Ωk∈I(x1)

...
∑

Ωk∈I(xn)

∏
j∈∂i

Tj(xj)(10)

=
1

Z

∏
j∈∂i

∑
Ωk∈I(xj)

Tj(xj)(11)

=
1

Z

∏
j∈∂i

v̂aj→i(xi)(12)

I(xj) denotes the set of indexes for variables in xj . In the final step we defined the incoming
message v̂aj→i(xi) =

∑
Ωk∈I(xj)

∏
Aj fa(x∂a). This expression, while more manageable than

before, still contains many factors if the size of the subtree Tj is large. Instead we can look
towards simplifying the incoming message by considering:

v̂aj→i(xi) =
∑

Ωk∈I(xj)

∏
Aj

fa(x∂a)(13)

=
∑

Ωk∈I(xj)

faj (x∂aj )
∏
Aj/aj

fa(x∂a)(14)

=
∑

Ωk∈∂aj/i

faj (x∂aj )
∑

Ωk∈I(xj)/(∂aj/i)

∏
Aj/aj

fa(x∂a)(15)

This can be further rearranged by considering the sets I(xj)/(∂aj/i) andAj/aj . I(xj)/(∂aj/i)
is the set of all the rest of the variable nodes in Tj without the variables in the neighborhood of
factor node aj . Using the tree topology condition, we see this ’leftover’ set of variables can be
partitioned into smaller subsets. In order to do this, let us define another layer of sub trees, tl
in each Tj , with roots al which are defined as the factor nodes in the set ∂k/aj for all k ∈ ∂aj/i.
Just as before, these trees tl can be considered as polynomials, whose inputs can be named xl.
What we see is for all variables in I(xj)/(∂aj/i), each is uniquely assigned one tree as no two
trees can contain the same variable node, else the initial tree assumption will be contradicted.
Therefore, the sub trees define the subsets into which the ’leftover’ variables can be partitioned.
The set Aj/aj can also be partitioned in a similar way by considering the sub trees tl. We find
Aj/aj =

⋃
k∈∂aj/i

⋃
l∈∂k/aj Al with Al being similarly defined as the set of all factor nodes in

tree tl. This allows the expression of v̂aj→i(xi) to be written as:

v̂aj→i(xi) =
∑

Ωk∈∂aj/i

faj (x∂aj )
∑

Ωk∈I(xj)/(∂aj/i)

∏
Aj/aj

fa(x∂a)(16)

=
∑

Ωk∈∂aj/i

faj (x∂aj )
∏

k∈∂aj/i

∏
l∈∂k/aj

∑
Ωk∈I(xl)

∏
Al

fa(x∂a)(17)

=
∑

Ωk∈∂aj/i

faj (x∂aj )
∏

k∈∂aj/i

∏
l∈∂k/aj

v̂al→k(xk)(18)

=
∑

Ωk∈∂aj/i

faj (x∂aj )
∏

k∈∂aj/i

vk→aj (xk)(19)
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In the penultimate line we have recognised the equation for v̂ can be substituted in for
another variable node, in the case for all variable nodes k ∈ ∂aj/i. The final step is to define the
outgoing message vk→aj (xk) =

∏
l∈∂k/aj v̂al→k(xk).

What has been derived above is the technique known as Belief-Propagation. This technique
relies on systems having a tree factor graph structure. If the system is in the suitable graph
format, to implement Belief-Propagation, the calculation of the incoming and outgoing messages
v̂ and v are all that is necessary. To do this, an iterative approach is used. Defining the iterative
messages for neighboring factor and variable nodes a and i as:

v̂ta→i(xi) =
∑

Ωk∈∂aj/i

fa(x∂a)
∏

k∈∂a\i

vtk→a(xk)(20)

vt+1
i→a(xi) =

∏
b∈∂i\a

v̂tb→i(xi)(21)

these messages are calculated for all edges, computing first incoming edges a → i and then
outgoing edges i→ a. The application of the BP algorithm is successful if the iterations converge
to fixed points, which will be the final solution - as stated before, the marginals can be calculated,
ideally once a threshold of convergence is reached, by taking the product of the incoming messages
to each respective variable node. To run the algorithm though, an initial condition needs to be set,
the common practice being to set the initial messages, v0

i→a(xi), to a uniform distribution over the
configuration space Ωi. For many graph structures, convergence to a solution is not guaranteed,
but it is possible to prove the BP algorithm provides exact solutions on tree graphs. Furthermore,
under certain conditions, solutions can be found for non tree factor graphs. Example conditions
include graphs with short range correlations and long loop lengths to allow perturbations on
nodes to diminish as they propagate through the graph, enough so to have negligible affect on
the original perturbed node. These graphs would be considered locally tree like, an example
being the random regular graph with vertex degree c+ 1 such that N >> c.

5. Assignment Problem

As an example of Belief-Propagation, the algorithm can be applied to the well known prob-
lem, the Assignment Problem.

Consider a set of N people P who are each about to be assigned a single job from a set of
N jobs J . Each person has their own skills and their affinity with each of the N jobs is recorded
in the job matrix Eij . The assignment task is to assign each person to one job. This is recorded
in the occupation matrix {nij} ∈ {0, 1}N×N , where we will denote the assignment of person i to
job j as nij = 1. Once a matching of people to jobs is established, it is given a cost E which is
simply the sum of all affinities in that given assignment. The problem is to find the assignment
of people to jobs, the specific occupation matrix {nij}∗, which minimises the cost E.

To define the BP update rules we must first define a suitable probability distribution. Firstly
we know there exist constraints on the system, one being that the assignment task can only assign
at most 1 job to each person. This can be written in the form of a ’hard constraint’ for a general
assignment {nij}:

∀ i ∈ P, I

∑
j∈J

nij ≤ 1

 =

{
1, if nij is a valid assignment

0, otherwise
(22)

Similarly we see the converse is also true, one job can only be assigned one person to under-
take it, and the hard constraint equation is the same, but set P is replaced with set J . To filter
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the valid assignments, we can combine the two hard constraints into the following:

C1(nij) =
∏
j∈J

I

(∑
i∈P

nij ≤ 1

)∏
i∈P

I

∑
j∈J

nij ≤ 1

 =

{
1, if nij is a valid assignment

0, otherwise
(23)

The hard constraint removes many of the invalid assignments from the space {nij} ∈
{0, 1}N×N . It will be used to define the support of the function, refining the domain of the
probability function to a smaller set. The hard constraint is not enough to fully define the sup-
port of P though as it allows for assignments which include unmatched peoples and jobs. To
restrict the support of P fully we want only perfect matchings to be allowed to have non zero
probabilities. To do this we can include a soft constraint. In general however this soft constraint
is used to tackle problems other than just optimisation. The constraint is written as:

C2(nij) =
∏

i,j∈P,J
e2βγnij(24)

where the 2 is included for ease of notation in future calculations. What is seen in the limit
as γ → ∞, the constraint becomes more concentrated on high occupation assignments. The
most occupation allowed by the hard constraint C1 is a 1 to 1 assignment, a total assignment
of N , which corresponds to perfect matchings on the bipartite graph representation. The final
constraint of P is the weight itself. C3 takes the form of a soft constraint as well and by using
the formulation of the probability function in the first section, we see it is of an exponential
function. In the limit of β →∞ the constraint focuses on low cost assignments, which is exactly
what we look to find. Thus, the probability distribution takes the final form:

P (n) =
∏
j∈J

I

(∑
i∈P

nij ≤ 1

)∏
i∈P

I

∑
j∈J

nij ≤ 1

 ∏
i,j∈P,J

e−βnij(Eij−2γ)(25)

where we have taken n ∈ {0, 1}N×N . This distribution is in a suitable factorised form
with variable nodes in P ∪ J and factor nodes in {Eij}. P (n) is a function of Eij which is
itself a function of neighbors, variable nodes, of a factor node. From this we can construct the
corresponding BP update rules for the assignment problem. They take the form:

vEij→i(nij)
∼= v̂j→Eij (nij)e

−βnij(Eij−2γ)(26)

v̂j→Eij (nij)
∼=
∑
{nkj}

I

nij +
∑
k∈P\i

nkj ≤ 1

 ∏
k∈P\i

vEkj→i(nkj)(27)

5.1. Dimer problems. The assignment problem is a fascinating example of a combinatorial
optimisation problem one can investigate. If one considers the factor graph of the assignment
problem, it is clear that the problem is in fact an example of a dimer model problem.

A dimer model can be defined on a graph G = (V, E). To begin, we first consider a single
dimer on G. A dimer is an edge e of G whose end vertices have degree one; the vertices adjacent
to each other via the dimer edge e are not connected to any other edges. A dimer covering D
can then be defined as a subgraph of G given two constraints: the first is the vertex set of D is
the same set as the vertex set of G and the second is the edge set of D includes only dimer edges
such that all vertices lie in a dimer. This is equivalent to requiring a perfect matching over G.
As there is no condition when it comes to selecting edges to be dimers in the dimer covering,
most graphs will allow multiple unique dimer coverings.
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6. Statistical Inference

True to its title, statistical inference is the discipline in which data is analysed and from that,
properties of the underlying probability distribution are inferred. Formally, one can consider the
problem in a different way. Given a set of variables xi ∈ {xi} upon which we can perform
measurements or observations, resulting in the data {yj}, the aim of statistical inference is to
obtain the best inference of the initial parameters {xi} as possible from the potentially noisy
measured or observed data {yj}. When faced with such problems, there are two questions one
can ask. The first is what conditions does the data need to satisfy for a sufficient or satisfactory
recovery of the initial conditions, such as is there enough data and is the quality of the data high
enough? The second is similar to questions asked for previously discussed problems: can the
inference of the measured or observed data be conducted in some algorithmic way so as to be
performed computationally? We find in fact both questions are related to the type of transition
that is exhibited, between different types of recovery of the initial conditions.

The problem can be reduced to that of a Bayesian inference problem. This utilises Bayes
formula:

P (x|y) =
P (y|x)

P (y)
· P (x) =

P (y|x)

Z(y)
· P (x)(28)

Posterior =
Likelihood

Evidence
· Prior(29)

where we have renamed the evidence P (y) = Z(y). To ascertain an inference of the initial
parameters, we must use either the posterior P (x|y) or a function of the posterior, called an
estimator. An estimator is a ’distance’ function one extremises over the set of possible initial
parameters, the argument of the extremisation being the solution to the inference problem. This
implies there is a non unique solution that exists for a given statistical problem, depending on the
estimator used. Defining the initial parameters set as the vector x∗ and the optimal estimator
as x̂, some examples of standard estimators are:

• MAP - Maximum A Posteriori - The function here is simply the posterior probability,
implying:

x̂MAP = arg max
x

P (x|y)(30)

• MMSE - Minimum Mean Squared Error - This estimator finds the minimum squared
error between x̂ and x averaged over the posterior distribution:

x̂MMSE = arg max
x
〈 1

N

N∑
i=1

(x̂i − xi)2〉Px|y(31)

• MMO - Maximum Mean Overlap - In cases of discrete valued inference problems, this
estimator finds the x̂ which maximises the element-wise agreement between the inferred
solution and x, averaged over the posterior distribution:

x̂i
MMO = arg max

xi

Pi(xi|y) = arg max
xi

∫ ∏
j 6=i

dxiP (x|y)(32)

We can refine our set of statistical inference problems when we consider the specific subset,
the Student/Teacher (S-T) scenario. To understand this scenario first let us begin with our
student and teacher. The teacher has a statistical inference problem for the student and as
a result creates a set of variables x∗, the ’ground truth’, from some probability distribution
Pprior. The teacher uses these variable to generate a set of data y by using the statistical model
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characterised by the distribution Pmodel. They give this data to the student and the students
task is to infer x∗ from the data y along with partial or full knowledge of both Pmodel and Pprior.

The S-T scenario can be used to understand other models, one of which being the Planted
ensemble model. In general, the two are mostly the same, the planted ensemble problem being
a subset of problems in the S-T superset. A teacher sets an inference problem for their student,
defines a realisation of variables x∗ called the ’planted configuration’ and also generates the data
set y called the ’planted disorder’, giving both to the student. The distinction between general
S-T and ensemble problem comes with the definition of y. In the S-T problem, there are no
restrictions on how y is defined. This allows for definitions of y such that all elements yi can be
independently distributed random variables. This is not case in the planted ensemble problem
and we find the components are all correlated. This subtlety can be visualised best using a
common example, graph colouring.

Suppose we consider a teacher with a complete graph G = (V, E) who wants to colour the
vertices of the graph with a finite set of colours. They generate an initial colouring of the
vertices using a distribution of the colours which results in the planted configuration x∗. This
configuration is then used to generate a second, uncoloured graph with the same vertices and
an edge set which includes randomly selected edges of the coloured complete graph that only
connect vertices with different assigned colours. These edges form the data set y. We see in
this example, the selection of edges which form the planted disorder, each edge represented by a
discrete boolean variable, is not uncorrelated to others in the edge set; each is wholly dependent
on the planted configuration.

7. The planted matching problem

Statistical inference problems such as the ones described previously can be easily considered
on dimers and the matching problem. This problem is studied in [12]. The authors investigate
the recovery of planted dimer configurations in weighted random graphs, exploiting the effect of
using separate distributions for the planted and non-planted edges. For general distributions,
the transition between partial and full recovery is then found and detail is given about specific
cases of distributions.

7.1. Intro. The paper starts by outlining the case which is to be studied. Given a complete
graph G0, a perfect matchingM is selected uniformly at random from all possible matchings and
set as the planted configuration. The planted configurationM is used to define another graph G,
whose vertex set is equal to the vertex set of G0 but has edge set equal to M. Additional edges,
all elements of the edge set of G0 without M, are added at random with probability c

N to the
edge set of G. Having considered all edges of G0 not inM, weights are then assigned to the edges
of G. Continuous distributions p̂ and p are used as weights for edges in the planted matching and
those not in the planted matching respectively. Straight away it is possible to identify possible
weights given the distributions p̂ and p. As weights are distributed to the edges from the supports
of the two distributions, there exists the potential that, if the supports are not equal, there are
edges with assigned weights that could only come from one of the two distributions. These edges
can be identified immediately and removed from the problem. What is left then is a graph with
weighted edges, each of those weights having the potential of being distributed by either p̂ or
p as their weight lies in the intersection of the two supports, which is named Γ. By removing
the known edges, those that are left are conditioned as to whether they are in Γ or not. The
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distributions p̂ and p become:

ˆP (w) =
1

µ̂
p̂(w)I(w ∈ Γ), µ̂ =

∫
Γ

p̂(w)(33)

P (w) =
1

µ
p(w)I(w ∈ Γ), µ =

∫
Γ

p(w)(34)

Each node thus has 1 + Z edges, one which is an element of the planted matching and Z other
edges in the planted disorder where Z can be shown to be a Poisson random variable with mean
γ := cµ̂µ. The inference to be studied is whether it is possible to recover the original matching
M with only the weighted graph G, and how the parameters p̂, p and c affect recovery. To
recover the planted matching an estimator is required. The authors select two to study, the
MAP estimator which they call the block MAP estimator and the MMO estimator, which they
call the symbol MAP estimator. More specifically, the MMO estimator minimises the distance,
which in this case is defined to be the number of nonequivalent element-wise entries, between the
planted matching M and the inferred matching M̂. This quantity is named the reconstruction
error and given the symbol ξ. Throughout the paper they focus on the block MAP estimator,
making final comments on how their results identify behaviour of the symbol MAP estimator as
well.

7.2. Belief Propagation. To recover the planted matching from the graph, it is suggested
the Belief-Propagation algorithm can be used to find it. This is argued by considering the
probability of a given planted matching on the graph. Given the distribution of the matching
over the graph, ideally we look to the marginals, that being the probability of a specific edge
being in the matching or not. By then considering the limit of these marginals as β →∞, we see
the probability concentrate on the minimal solution. In the case of the paper, this corresponds
to the solution of the block MAP estimator. It is also noted that in the β = 1 situation, we
extract the solution for the symbol MAP estimator.

In the case of the distribution, for all planted matchings, m = {me | e ∈ E} where me = 1 ↔
edge e is in the planted matching E , the distribution can be calculated as:

v(m) ∝ e−β
∑
e∈E meωe

∏
i∈V

I

(∑
e∈∂i

me = 1

)
(35)

where the effective weight ωe = ω(we) = − ln P̂ (we)
P (we)

is introduced and the normalisation coef-

ficient is neglected. It is proposed the analytic computation of the marginals of this distribution
is intractable, suggesting instead an approximate solution is more feasible, one in the form of the
Belief-Propagation equations. The messages vi→e(m) can be calculated and reparameterised by
a new variable hi→e, resulting in vi→e = vi→e(m,hi→e). The cavity fields are defined for ease of
calculation and are related to the BP messages through the equation:

vi→e(m) :=
eβmhi→e

1 + eβhi→e
(36)

The BP messages can then be rearranged into an iterative equation with hi→e as its subject.
The marginal of each edge e can be considered in terms of hi→e as well but it is worth noting,
just like the BP equations, the cavity field equations are functions of edges not including the
edge to be calculated. Having reparameterised the marginal the inclusion rule is defined. If the
marginal of an edge indicates there is a higher probability of that edge being in the matching
than not being in the matching, it is inferred it was an element of M

M̂s =

{
e ∈ E : ve(1) >

1

2

}
(37)
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The inference solution M̂s can only be considered once the BP equations have reached some
threshold of convergence to a fixed point of the equations.

7.3. Recursive Distributional Equations. While this is a valid method for inferring the
matching for a given instance of the problem, one example is insufficient to gain insight into
the behaviour of the system in general. For that we need to consider the ’average’ behaviour
exhibited. To this end the authors generalise the process, replacing realisations of randomly
distributed variables in equations with a variable distributed accordingly. They start by defining
two new random variables to study which describe the behaviour of the cavity equations in a
general instance along with another two random variables to assist this. These complementary
random variables are Ŵ and W , which are distributed according to P̂ and P respectively and
act as generic substitutes for the weights of an instance of the weighted graph. These are used
in conjunction with the equation for ω to define Ω̂ = ω(Ŵ ) and Ω = ω(W ). Considering hi→e
as a random variable, Ĥ and H are introduced to describe the distributions of the cavity field
random variables for edges in the planted matching and the non planted matching respectively.
For any given instance of the graph, if edge i→ e is a planted edge, i is incident to Z non planted
edges and if edge i→ e is a non-planted edge, i is incident to a planted edge and Z non-planted
edges. Formally, these read as follows:

Ĥ ∼ − 1

β
ln

(
Z∑
i=1

e−β(Ωi−Hi)

)
(38)

H ∼ − 1

β
ln

(
e−β(Ω̂i−Ĥi) +

Z∑
i=1

e−β(Ωi−Hi)

)
(39)

In this new random variable setting, the inclusion rule can be interpreted as:

E[ξ] =
µ̂

2
P[Ĥ + Ĥ′ ≤ Ω̂] +

µ̂γ

2
P[H + H′ > Ω](40)

What the authors find at this point is a second selection of edges can be made that are
known for sure to be in the planted matchingM. If one considers a leaf on the graph, it must be
the case this leaf edge is in the matchingM, otherwise the node at the end would be unmatched.
The distributional equations reflect this property. If an edge e is a leaf, there exists one node of
the leaf, i with no neighboring edges. We can substitute this example case into the equation for
Ĥ and we are left with:

Ĥ ∼ − 1

β
ln

(
0∑
i=1

e−β(Ωi−Hi)

)
∼ − 1

β
ln (0) ∼ ∞(41)

The existence of leaves on a graph is an event which occurs with a non-zero probability,
which can be described as having the probability q̂ if the leaf is in the matchingM and q if it is
not in M. As a result, the recursive distributional equations can be rewritten as:

Ĥ ∼

{
∞, with probability q̂

Ĥ, with probability 1− q̂
, H ∼

{
−∞, with probability q

H, with probability 1− q
(42)

where it can be shown q̂ = q and must satisfy the relation q = e−γ(1−q) and Ĥ and H are
finite with probability 1. The authors make a note stating they exclude the event of Ĥ ∼ −∞
and H ∼ ∞
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Substituting these into the equations for Ĥ and H, we obtain the equations satisfied by Ĥ
and H. It is shown:

Ĥ ∼ − 1

β
ln

(
Z∑
i=1

e−β(Ωi−Hi)

)
, H ∼

{
Ω̂− Ĥ, with probability q

− 1
β ln

(
e−β(Ω̂−Ĥ) + e−βĤ

′
)
, with probability 1− q

(43)

where Z is a Poisson random variable with parameter γ(1− q). The average reconstruction
error is then re-evaluated to be:

E[ξ] =
µ̂(1− q)2

2
P[Ĥ + Ĥ ′ ≤ Ω̂] +

µ̂(1− q)2γ

2
P[H +H ′ > Ω](44)

7.4. Transition location for block MAP. To estimate the block MAP solution, the
authors revisit the significance of the β → ∞ limit. In particular, the Recursive Distributional
Equations can be simplified in this limit:

Ĥ ∼ min
1≤i≤Z

(Ωi −Hi), H ∼

{
Ω̂− Ĥ, with probability q

min(Ω̂− Ĥ, Ĥ ′), with probability 1− q
(45)

as well as the average reconstruction error:

E[ξ] = µ̂(1− q)2P[Ĥ + Ĥ ′ ≤ Ω̂](46)

The authors now search for a continuous phase transition with respect to some unknown
variable λ, upon which the average reconstruction error is dependant E = E[ξ](λ). They propose
there exists a λ̄ such that for λ < λ̄, E[ξ](λ) > 0 indicating the system is in a state of partial
recovery, whereas for λ < λ̄, E[ξ](λ) = 0 representing the state of full recovery. If this is the case
though, the revised average reconstruction error equation implies as E[ξ] → 0, given the other

coefficients are non-zero, P[Ĥ + Ĥ ′ ≤ Ω̂]→ 0, implying Ĥ + Ĥ ′ > Ω̂ for all Ω̂. As Ω̂ is a random

variable, this is only possible if Ĥ → ∞. Knowing this we see the equations Ĥ and H must
behave as:

Ĥ ∼ min
1≤i≤Z

[Ωi −Hi] , H ∼ Ω̂− Ĥ(47)

If we define a new random variable Ξ ∼ Ω − Ω̂ we find the distributional equations can be
simplified into a single equation for Ĥ:

Ĥ ∼ min
1≤i≤Z

[
Ξi − Ĥi

]
(48)

The form the equation has been manipulated into has significant importance. The authors
discovered a fascinating connection with this equation form and properties of a process known
as Branching Random Walks (BRW).

Branching Random Walk processes describe the progression along a single spatial axis of
an increasing population of points at discrete time intervals. More formally, let us define our
population of points as {Xn

k }k where n indicates the interval of time and k represents the number
of particles at time interval n. For convenience the Real axis is set as the spatial axis and the
initial conditions for the process at n = 0 are k = 1, resulting in an initial population set of {X0

1},
starting at the origin. At each successive time interval, from n to n + 1, each parent particle
Xn
i in the population is assigned a number of offspring particles Zi in the n + 1 generation,

Zi being a random variable, independent and identically distributed for each parent, with each
offspring assigned also a displacement, Ξj , which is also an i.i.d. random variable. For a given
parent particle, the set of new offspring particles are then located at {Xi,j}j = Xi + Ξj . In the
transition from time interval n to n + 1, the population of generation n ’dies’, leaving only the
new offspring in generation n+ 1. The property of this process highlighted by the authors to be
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of significance is the progression of the point on the axis with the minimum location in the large
n limit.

More specifically, the minimum point of each generation can be labelled; K̂n = mini[X
n
i ].

After each time interval, by definition of K̂n, it must obey the recursive distributional equation:

K̂n+1 ∼ min
1≤i≤Z

[
Ξi − Ĥi

]
(49)

This type of process has been studied before, allowing the authors to draw on previous
knowledge. As a result it is known that, provided the process does not reach extinction, K̂n =

−∞ in finite time, K̂n

n → v as n → ∞ with almost sure convergence. v is a constant ’velocity’
of the process and can be calculated as:

v = − inf
θ>0

1

θ
ln (E[Z]E[e−θΞ])(50)

Another important property of the random variable K̂n, is it follows the following limit:

K̂n − nv − C log n→ L, n→∞(51)

where C is a constant; it is noted this behaviour is satisfied only under specific ’technical condi-
tions’. The equation converges to the finite random variable L, the solution satisfying:

L ∼ −v + min
1≤i≤Z

[Ξi − Li](52)

An important note is made at this point explaining that the solution L is translation in-
variant. This implies if L is a solution of this distributional equation, so too is L + α for
any constant α. It is then argued, if the problem is considered such that v = 0, we see
K̂n−C log n→ L ∼ min1≤i≤Z [Ξi − Li]. In this specific case, not only does L become a solution

of the BRW recursive distributional equation for K̂n, we also see as n→∞, K̂n → C log n+ L.
As it is made clear L is translation invariant, this implies K̂n → C log n+ L ∼ L.

Returning to the planted matching problem at hand, it is outlined in the paper it is possible
to prove the new random variable K̂n defined above is stochastically smaller than the previ-
ously defined Ĥ, which describes the finite cavity field distribution. As both K̂n and Ĥ are
distributionally defined using equivalent parameters, we can rewrite the velocity as:

v = − inf
θ>0

1

θ
ln [I(θ)I(1− θ)], I(θ) =

√
γ

∫
Γ

P̂ (w)θP (w)1−θ dw(53)

As explained above, in the large generation limit of the process K̂n, when v = 0 we see K̂n tend
to a nontrivial solution. This is the condition the authors state must be satisfied at the boundary
between partial and full recovery.

The infimum of ln [I(θ)I(1− θ)] is found to be the point I( 1
2 ) = 1, resulting in the final form:∫

Γ
√
p̂(w)p(w) dw =

1√
c

(54)

where p̂, p and c are the original parameters of the problem.
The paper goes on to make use of the results that have come before this and provide examples

of a few planted matching problems as well as the results they were able to calculate along with
some conclusive remarks.



CHAPTER 2

Inferring planted matchings on lattices

Influenced by the results of [12], the aim of my project expands on the papers previous
work, focusing on more explicit examples and their properties. We look to study the behaviour
of the transition between partial and full recovery of a planted perfect matching in different graph
topologies subject to various constraints.

1. Establishing inference in Graphs

We will consider three undirected graph types in the following analysis. They are as follows:
• GC(n) = Complete graph of n vertices
• GR(n, c) = Random Regular graph of n vertices. Each vertex has coordination c or

equivalently degree c+ 1, connected uniformly at random to the other n-1 vertices.
• GS(

√
n) = Finite square lattice of size

√
n×
√
n

To outline the inference problem, let us start with an instance of an undirected, unweighted
graph G0 - the use of the non specific graph notation G indicates the same procedure is carried
out regardless of which graph structure is initially chosen. The procedure is as follows:

• In G0, let us define a perfect matching M. Of all possible perfect matchings M is
arbitrarily chosen and selected as our planted matching.
• WithM chosen, ρ̂, ρ ∈ [0, 1] are defined to be the fraction of planted matching edges and

non-planted matching edges ’removed’ respectively. One can imagine this to be similar
to loss of information during signal transfer. Removed edges are given an uninformative
symbol ?.
• The remaining edges, those in the matching M and those not in M are assigned

separate random variable weights. The weight of edge ê in the planted matching,
wê ∼ Ŵ , is exponentially distributed with rate parameter λ. The weight of edge e not
in the planted matching, we ∼ W , is exponentially distributed with rate parameter
1
c , c being the coordination. One should note all edges are independently distributed.

More formally, Ŵ ∼ Exp (λ) with probability distribution P̂ and W ∼ Exp ( 1
c ) with

distribution P . The weighted graph is now labelled G.
In the language of statistical inference, more specifically the Student-Teacher scenario, what

we have done by employing this procedure is create a planted configuration, the planted matching
M, and generate a data set, that being the set of weighted edges of the graph G, along with
information about the distributions of edge weights, upon which inference can be conducted.

Our objective is to study how the success of recovery of M behaves on average for each
graph structure. We shall indicate the recovered matching as M̂ and our statistical inference
will be performed using only the restricted knowledge of the weighted graph G, the distribution
of planted and non-planted edges P̂ and P and the probability of edge removal ρ̂ and ρ. Success
of our statistical inference can be quantified by considering the proportion of edges incorrectly
inferred to be in the planted matching. More formally, we look to calculate the symmetric
difference of M̂ and M, scaled by a factor 1

N to allow for comparison of error between different

19
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Figure 1. From left to right: Complete graph of N = 7, Random Regular
graph of N = 7, c = 4, Square lattice of N = 5× 5 = 25

size graphs. Thus, the error in our recovery can be calculated as:

E = |M∆M̂|(55)

2. Boundary of phase transition

There are two states the system could exist in as a result of initial parameter choices: a
state in which the error, E, is non-zero and a state in which the error is zero. We shall call these
two phases, partial recovery and full recovery. It is possible, for the random regular graph, to
calculate the transition point as a function of ρ̂, ρ, c. To do this we follow similar steps as in [12].
First we must define the probability of a matching over the random regular graph. We define
matchings, m to be distributed with the following function:

P (m) =
1

Z
e−β

∑
e∈E meωe

∏
i∈V

I

(∑
e∈∂i

me = 1

)
(56)

where we have included the effective weight ωe = ω(we) = − ln P̂ (we)
P (we)

. From this we can use

the formulation of belief propagation to calculate the BP messages. We know this is possible
as the structure of the problem - the random regular graph G, can be formulated into a factor
graph F . If we set variable nodes in F to be the edges of G and factor nodes of F to be the
vertices of G we form a suitable bipartite graph - in any graph, edges only connect to vertices,
and visa versa. For vertex i and edge e the messages have the form:

vi→e(me) ∝
∑

{me′}e′∈∂i\e

I

me +
∑

e′∈∂i\e

me′ = 1

 ∏
e′=(r,i)
e′∈∂i\e

vr→e′(me′)e
−βme′ωe′(57)

We look to write these message equations in a more versatile form, prompting the param-
eterisation of the marginal message vi→e(m) in terms of cavity fields hi→e which are related to



2. BOUNDARY OF PHASE TRANSITION 21

Figure 2. Decomposition of ĥi→ê and hi→e in terms of other cavity fields for
c = 3. We see only non planted matching cavity fields contribute to the cavity

field for the planted matching ĥi→ê. However a single planted matching cavity
field contributes, along with the c− 1 non-planted matching cavity fields, to the
non-planted cavity field hi→e

the message marginals via the normalised distribution for me ∈ {0, 1}:

vi→e(me) :=
eβmehi→e

1 + eβhi→e
⇒ hi→e = − 1

β
ln

 ∑
e′=(r,i)
e′∈∂i\e

e−β(ωe′−hr→e′ )

(58)

We can refine our definition of hi→e by considering the case when e is a planted edge and

when it is not a planted edge. Let us define ĥi→ê to be the cavity field of a planted edge ê and
hi→e, the cavity field of a non-planted edge e. By using the topology of the random regular

graph, we see ĥi→ê, hi→e take the values:

ĥi→ê = − 1

β
ln

 c∑
j=1

e
−β(ωe′

j
−hrj→e′j )

(59)

hi→e = − 1

β
ln

e−β(ωê−hk̂→ê) +

c∑
k=1,k 6=k̂

e
−β(ωe′

k
−hrk→e′k

)

(60)

where we have assumed e′j = (rj , i) ∈ ∂i\ê, e′k = (rk, i) ∈ ∂i\e for all j, k and e′
k̂

= (k̂, i) = ê.

We can now define the inclusion rule, that being the condition edges must satisfy in order
to be considered part of the recovered matching. This rule is simply whether the probability the
edge is in the matching is higher than the probability it is not. This can be written as:

M̂ = {e ∈ E | ve(me = 1) >
1

2
}(61)
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We have defined ve to be the marginal of edge e connecting vertex i to j, and in a similar
way as before, we can define ve using the convenient parameterisation:

ve(me) :=
eβme(hi→e+hj→e−ωe)

1 + eβ(hi→e+hj→e−ωe)
(62)

It then follows, the inclusion rule must be defined as:

M̂ = {e ∈ E |hi→e + hj→e > ωe}(63)

These equations work only for the single instance of a generated graph. To study the be-
haviour over infinite instances, we can define new random variables, Ĥ,H which correspond to
the planted and non-planted edges respectively and describe the cavity fields. They are governed
by the cavity field equations themselves and have the form:

Ĥ ∼ − 1

β
ln

(
c∑
i=1

e−β(Ωi−Hi)

)
(64)

H ∼ − 1

β
ln

(
e−β(Ω̂i−Ĥi) +

c−1∑
i=1

e−β(Ωi−Hi)

)
(65)

We need to consider the inclusion rule to progress further with the derivation. Recall the
error was the proportion of incorrectly classified edges against the size of the matching. In other
words, this is the fraction of incorrect edges in M plus the fraction of correct edges not in M.
Using the inclusion rule, we can calculate the error E to be:

E[ξ] =
1

2
P[Ĥ + Ĥ ′ ≤ Ω̂] +

c

2
P[H +H ′ > Ω](66)

As we are looking for the MAP estimator, we need to consider these equations in the limit
as β → ∞. In this limit, we see Ĥ concentrate on the minimal exponent of Ωi − Hi and H
concentrates on the minimal exponent of Ωi −Hi compared with Ω̂i − Ĥi. More formally, what
happens is:

Ĥ ∼ min
1≤i≤c

(Ωi −Hi), H ∼ min(Ω̂− Ĥ, min
1≤i≤c−1

(Ωi −Hi))(67)

The inclusion rule can also be simplified in the large β limit, and we are left with the resulting
condition:

E[ξ] = P[Ĥ + Ĥ ′ ≤ Ω̂](68)

What we see at this point is that for E[ξ] = 0⇒ P[Ĥ+Ĥ ′ ≤ Ω̂] = 0, it must be the case that

Ĥ + Ĥ ′ > Ω̂. This implies Ĥ →∞ at the transition to zero error. This affects the distributions
of Ĥ and H, resulting in the new distributions:

Ĥ ∼ min
1≤i≤c

(Ωi −Hi), H ∼ Ω̂− Ĥ(69)

The same application of the BRW can be made at this point, to these equations, resulting
in the condition: ∫

Γ

√
p̂(w)p(w) dw =

1√
c

(70)

For distributions p̂ and p we are considering the case when there exists potential edge removal
from the graph, edge weights being replaced by an uninformative symbol ?, with probability ρ̂
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and ρ respectively. Otherwise the distributions are exponential with separate variables. They
can be written in the following way:

p̂(w) = (1− ρ̂)P̂ (w) + ρ̂δ(w − ?) = (1− ρ̂)λe−λw I(w ∈ R≥0) + ρ̂δ(w − ?)(71)

p(w) = (1− ρ)P (w) + ρδ(w − ?) = (1− ρ)
1

c
e−

1
cw I(w ∈ R≥0) + ρδ(w − ?)(72)

The support of each probability distribution is the same, meaning Γ = {?} ∪ R≥0. If we
substitute just the range of integration into the given condition we find:

1√
c

=

∫
Γ

√
p̂(w)p(w) dw(73)

=

∫
{?}∪R≥0

√
p̂(w)p(w) dw(74)

=

∫
{?}

√
p̂(w)p(w) dw +

∫
R≥0

√
p̂(w)p(w) dw(75)

= I{?} + IR≥0
(76)

We can calculate each integral separately, taking the sum of the two to find the solution.
Let us consider the first integral, I{?}. Over just the set {?}, we find both distributions, p̂ and p,

simplify. Without loss of generality, by considering p̂ over the domain {?}, the (1−ρ) 1
c e
− 1
cw I(w ∈

R≥0) term equals 0 as I(? ∈ R≥0) = 0. So the result is just the delta term p̂(w) = ρ̂δ(w − ?).
The same can be said for the distribution p, leaving the integral in the simplified form:

I{?} =

∫
{?}

√
ρ̂δ(w − ?) · ρδ(w − ?) dw(77)

=

∫
{?}

√
ρ̂ρ
√
δ(w − ?) · δ(w − ?) dw =

√
ρ̂ρ

∫
{?}

√
δ(w − ?) · δ(w − ?) dw(78)

=
√
ρ̂ρ

∫
{?}

δ(w − ?) dw(79)

=
√
ρ̂ρ(80)

The second integral, IR≥0
, can be solved in a similar manner. For all w ∈ R≥0, δ(w− ?) = 0

and I(w ∈ R≥0) = 1 so both distributions p̂ and p are reduced to (1− ρ̂)λe−λw and (1−ρ) 1
c e
− 1
cw

respectively. The integral can then be solved by first substituting:

IR≥0
=

∫
R≥0

√
(1− ρ̂)λe−λw · (1− ρ)

1

c
e−

1
cw dw(81)

=

∫
R≥0

√
(1− ρ̂)(1− ρ)

√
λ

c

√
e−λw · e− 1

cw dw(82)

=

√
λ

c

√
(1− ρ̂)(1− ρ)

∫
R≥0

e−
λ+c−1

2 w dw(83)

=

√
λ

c

√
(1− ρ̂)(1− ρ)

[
e−

λ+c−1

2 w

−λ+c−1

2

]∞
0

(84)

=

√
λ

c

√
(1− ρ̂)(1− ρ)

(
2

λ+ 1
c

)
(85)
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Combining the two integrals, we see the boundary is satisfied by the curve:

1√
c

=
√
ρ̂ρ+ 2

√
c(1− ρ̂)(1− ρ)

√
λ

λc+ 1
(86)

What we can initially note about this function is that there is no distinction made between
the values ρ̂ and ρ. This implies, regardless of which edge set is suppressed, the transition will
occur at the same point. Our statistical inference relies prior knowledge of ρ̂, ρ and c. This allows
us to estimate the regions of partial and full recovery before they are numerically investigated.
Our numerical investigations will be limited to estimations as there may be noticeable finite size
error in the results.

3. Numerical Investigation

Given some instance of matching recovery on graph G, as established above, it is possible to
calculate the success of the statistical inference in terms of the error E. This calculation though
is limited to the success of recovery given the specific realisation of the random variables that
were present in the given instance. In order to study the behaviour exhibited by the structure
of graph G, it is necessary to understand how the error behaves over multiple iterations of the
process. With no prior knowledge of the planted matching M, a weighted graph G = (V, E ,W)

is given along with the distributions P̂ and P of planted and non planted edge weights; the aim
being to identify the planted matching M. The numerical analysis was conducted by solving
instances of the graph for given initial parameters and averaging the error of the matching over
all iterations.

3.1. Numerical Discrepancy. In the numerical analysis we expect there to be a discrep-
ancy in our calculation between the error E of the square lattice and the random regular lattice.
There are three main causes of this. First is the finite size effect each recovery process feels. This
has contribution of order 1

N and for small sized graphs such as N = 64, 100, it is more likely this
affect has not become negligible. The second disparity is the boundary error on the square lattice.
While the two graph topologies are similar, depending on the boundary conditions imposed, the
square lattice is not always an instance of the random regular lattice. In this analysis, closed
boundary conditions were implemented, resulting in the boundary vertices of the lattice having
coordination c 6= 3. As a result of not all vertices having coordination 3, the graph structures
were not exactly the same. The final difference would be as a result of the size of loops present
in the graph. We know as the size of a random regular graph of coordination c = 3 increases,
locally the graph behaves as a tree and cycles become longer. In a lattice this is not the case.
For whatever N , there exist multiple cycles of length 4 for every node. The disparity between
the curves in the E/λ plots will be mostly due to this.

3.2. Numerical analysis without suppression ( ρ̂ = ρ = 0 ). We shall first consider
recovery properties of the random regular graph GR(n, c) with coordination c, along with the
behaviour exhibited as c→ n, this limiting case corresponding to the complete graph GC(n).

By plotting the error of recovery for random regular graphs of low values of coordination
along with the limiting coordination case, we see the transition point between partial and full
recovery is similar for all coordination c. This is to be expected and we can see this from the
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Figure 3. Reconstruction error for random regular graph of size n = 100 with-
out suppression, ρ̂ = ρ = 0. Coordination varies: c ∈ {2, 3, 4, 5, 10,∞} such that
c → ∞ corresponds to the complete graph. Each curve represents a locus of
points, each point being averaged over 100 instances.

boundary equation. At ρ̂ = ρ = 0 the boundary equation simplifies to give:

1√
c

= 2
√
c

√
λ

λc+ 1
(87)

(λc+ 1)2 = 4c2λ(88)

0 = c2λ2 + (4c2 − 2c)λ− 1(89)

Considering this equation, we see there are 3 solution sets: 0,1 or 2 solutions. At zero
solutions, there is no partial recovery phase, so we expect the matching to always be recoverable
in limiting size random regular graphs. For 2 solutions, (λ1, λ2) such that λ1 < λ2, we expect to
see zero error for λ < λ1 and λ > λ2 along with non-zero error in the region [λ1, λ2]. Finally for
the one solution case, there would be a single point which forces partial recovery of the matching,
while elsewhere is a region of full recovery. Table 1 records the expected transition for each case
plotted in figure 3. Considering the upper bound of the partial recovery phase first, the graph is
representative of what we expect to see; the error transitions from a region where E > 0 into a
region where E ≈ 0. We note it is not exactly zero, this being most likely due to finite size errors.
For the lower bound of the partial recovery phase a log scale is required to better understand
the result.
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c λ1 λ2

2 0.0858 2.9142
3 0.0337 3.2997
4 0.0179 3.4821
5 0.0111 3.5889
10 0.00263 3.7974
∞ 0 4

Table 1. Values of the transition point between partial recovery and full re-
covery of a hidden matching for a random regular graph of coordination c.

We can now consider the recovery error over the square lattice. Of the various graph topolo-
gies seen already, the square lattice has structure most similar to the random regular graph of
coordination c = 3. As a result, the E/λ curve for the square lattice of size N will be plotted
against the curve of the random regular graph of c = 3. This was tested for N = 64, 100 and in
both cases, the error for the square lattice follows the shape of the error for the random regular
graph closely, suggesting the transition points are close to one another. The similarity between
the two curves could be indicative of a deeper connection between the two graph topologies.
To understand further, we can next investigate how the suppression of edges affects the curve
shapes.

3.3. Numerical analysis with suppression ( ρ̂, ρ 6= 0 ). Having investigated the graphs
with no suppression, we can look to include supression, remove random edges, and see what
affect this has. For the random regular graph, to find the transition points, we need look no
further than the boundary equation. Using this we can estimate the location of the transition
points. For the performance of the square lattice, just as before, we can compare its error/λ
curve behaviour to that of the random regular graph of coordination c = 3 as these share a
similar topology.

We have plotted the boundary equation for c = 3 and ρ̂ = ρ in 5 to allow us to highlight
whether the curve for the square lattice behaves as the curve for the random regular graph. An
interesting note at this point is the asymptote, occuring at ρ̂ = ρ = 1√

c
, of partial recovery that

exists on the graph. This suggests no matter what value of λ it is impossible for full recovery.
What we find in all cases, is the behaviour of the random regular curve is followed by the

square lattice curve. With regards the transition points, we see the square lattice abides by
the transition point calculated for the random regular graph. This is most likely due to the
topologies of the graphs being so similar.

To consider a specific case however, we can investigate the set of instances of ρ̂ = ρ = 1. On
the phase diagram, this point lies out of the partial recovery phase in 5. It also lies to the right of
the asymptote at ρ = 1√

c
. At first glance, we expect to see a single region of full recovery for the

ρ̂ = ρ = 1 graphs, but this is not the case. What is shown in 7 is a region of almost no recovery,
instead of full recovery. To be more precise, we see recovery, but it is almost entirely incorrect.
What is causing this could be the asymptote. It is suggested the asymptote acts as a barrier for
the full recovery region, which from the evidence in 3, lies to the left of the asymptote. What
remains on the right of the asymptote is a region of incorrect recovery, explaining the results we
see for ρ̂ = ρ = 1 - at this high suppression, the graph can only guess the result of the matching.
In the large graph limit, we expect this region to correspond to the graph instances with recovery
error tending to 1.
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Figure 4. Top left and top right: Error E plotted against λ for N = 64 and
N = 100, with ρ̂ = ρ = 0. Bottom: Log plot of error E plotted against λ.
Shaded region represents partial recovery region, as calculated by the boundary
equation.

3.4. Conclusion. We have shown there exists a phase transition for the square lattice
between a region of partial recovery and full recovery of a planted matching. We also provide
evidence the square lattice behaves similarly to the random regular lattice when subject to the
same statistical inference of planted matchings. This is displayed through the similar behaviour
both models exhibit as initial parameters are changed. Finally we provide evidence a third state
exists, a ’no’ recovery phase, in which the recovered matching error tends to 1 in the large graph
limit.



28 2. INFERRING PLANTED MATCHINGS ON LATTICES

0.0 0.2 0.4 0.6 0.8 1.0

8

6

4

2

0

2

4

6

8

Figure 5. Phase diagram of planted matching problem over the random regular
graph of coordination c = 3, with suppression ρ̂ = ρ. The λ axis intervals
represent a logarithmic scale base 10. The grey area represents the region of
partial recovery, while the white region represents full recovery. The blue line,
bounding the partial recovery phase, is the vanishing velocity condition. The
red line is the asymptote of the boundary in the λ→ ±∞ where ρ→ 1√

c
= 1√

3

3.5. Future work. There is still plenty to investigate with regards the relationship between
random regular graphs and lattice graphs in the context of this statistical inference. One obvious
avenue of investigation would be to reduce error in the calculations. To make results more
accurate one would have to reduce both finite size error and boundary effect error. Finite size
error can be solved by increasing the size of the graphs. To expect BP to solve this challenge is
unreasonable. Another way in which this can be approached is by using a population algorithm
to iteratively replace elements using an update rule - in this case the recursive distributional
equations - of large sets which represent random entries of the distributions Ĥ and H. After
many replacements of the distributions Ĥ and H, over many instances of initial conditions, an
average could be calculated and plotted over λ. This would be faster to complete for large size
graphs.

Another point to consider would be to calculate the contribution causing the disparity be-
tween t error of the square lattice and the random regular graph. The boundary effect would
be reduced by implementing the system over periodic boundary conditions - wrapping the graph
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Figure 6. Top left and top right: Error E plotted against λ for ρ = ρ̂ = 1
3 with

N = 64 and N = 100. Bottom: Log plot of error E plotted against λ. Shaded
region represents partial recovery region, as calculated by the boundary equa-
tion.

over a torus. More specifically, with boundary on the lattice graph, we notice that there exist
vertices, the boundary vertices, with coordination c 6= 3. By applying periodic boundary con-
ditions, all vertices would have coordination c = 3, allowing for a more accurate comparison
between the square lattice and the random regular graph of coordination c = 3. By reducing this
discrepancy, it allows the investigation of a more precise understanding of the difference between
the recovered matching of the lattice and the random regular graph caused by the existence of
short length cycles in the lattice, which are not present in the random regular graph. A way to
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Figure 7. Error E plotted against λ for ρ = ρ̂ = 1 with N = 100 and N = 400.
There exists no division of regions as these initial conditions lay out of the partial
recovery phase.

graph this difference would be to find how the average recovery error changes as one transitions
between a random regular graph and a lattice. One way to do this would be to start with a
lattice and then alter that lattice by reconnecting an edge at random to another randomly chosen
node in such a way that after enough iterations of this process, one would be left with a random
regular graph. After each iteration of altering the the lattice, the average reconstruction error
would be calculated and the transition could be graphed.

The no recovery region found in 7 could also be investigated, providing more evidence and
possibly an analytic argument for the incorrect recovery region.

A final route one could take is to alter the initial probability distributions. This most likely
would result in different phase diagrams between partial recovery and full recovery along with
transition points between models.



APPENDIX A

Supplementary material

1. Maximum Entropy Inference

The principal of Maximum Entropy Inference, or MaxEnt inference, calculates the prob-
ability distribution for a support, given certain constraints. This is achieved using Lagrange
multipliers to maximise the entropy of the distribution. To begin, let us define entropy as
S[p] = −

∑
Ω p(σ) ln (p(σ)) and identify the two constraints in question: 1 =

∑
Ω p(σ) which

ensures the distribution is normalised and E = 〈E(σ)〉 =
∑

ΩE(σ)p(σ), where E is a dummy
variable. From this, we can define our Langrangian, L:

(90) L = −S[p]− λ0

(
1−

∑
Ω

p(σ)

)
− λ1

(
E −

∑
Ω

E(σ)p(σ)

)

where λ0, λ1 are Lagrange parameters for each constraint. By partially differentiating with
respect to p(σ̂), σ̂ ∈ Ω, we find:

∂L
∂p(σ̂)

= ln (p(σ̂)) + 1 + λ0 + λ1E(σ̂) = 0(91)

∂L
∂λ0

=
∑
Ω

p(σ̂)− 1 = 0(92)

∂L
∂λ1

=
∑
Ω

E(σ̂)p(σ̂)− E = 0(93)

As σ̂ is arbitrary, we can let σ̂ = σ. From this, we recover the constraints from 92 and 93
and from 91 we see:

0 = ln (p(σ)) + 1 + λ0 + λ1E(σ)

ln (p(σ)) = −1− λ0 − λ1E(σ)

p(σ) = e−1−λ0−λ1E(σ)

p(σ) =
1

Z
e−λ1E(σ)

p(σ) =
1

Z
e−βE(σ)(94)

We have defined Z = e1+λ0 and β = λ1. Z can then be calculated with respect to p(σ)
using the normalisation constraint. This results in 94 taking a form similar to a Boltzmann
distribution, where Z is a normalisation constant and β is inverse temperature.

31
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2. On the β → 0 limit

We take the distribution for p(σ) in the β → 0 limit:

lim
β→0

p(σ) = lim
β→0

1

Z
e−βE(σ)

= lim
β→0

1

Z
· lim
β→0

e−βE(σ)

= lim
β→0

1

Z
· 1 = lim

β→0

1

Z
=

1

limβ→0 Z
(95)

By considering the limit of Z as β → 0:

lim
β→0

Z = lim
β→0

∑
Ω

e−βE(σ) =
∑
Ω

lim
β→0

e−βE(σ)

=
∑
Ω

1

= |Ω|(96)

Therefore, by combining 95 and 96, we find in the limit as β → 0:

(97) p(σ) =
1

|Ω|

3. On the β →∞ limit

We now take the distribution for p(σ) in the β →∞ limit:

lim
β→∞

p(σ) = lim
β→∞

1

Z
e−βE(σ)

= lim
β→∞

1

Z
· lim
β→∞

e−βE(σ)

=
1

limβ→∞ Z
· lim
β→∞

e−βE(σ)(98)

Before we proceed, let us define first Ω0 ∈ Ω to be the set of configurations σ that minimise
the energy function; Ω0 = {σ̂ ∈ Ω : E(σ̂) = E0} where we have defined E0 = minΩE(σ). Now
we turn our attention to the limit of Z as β →∞:

lim
β→∞

Z = lim
β→∞

∑
Ω

e−βE(σ)

= lim
β→∞

∑
Ω0

e−βE(σ) +
∑

Ω\Ω0

e−βE(σ)


= lim
β→∞

∑
Ω0

e−βE(σ) + lim
β→∞

∑
Ω\Ω0

e−βE(σ)

= lim
β→∞

|Ω0| · e−βE0 + 0

= |Ω0| lim
β→∞

e−βE0(99)

Similarly we see for the limit of e−βE(σ) as β →∞:

lim
β→∞

e−βE(σ) = lim
β→∞

e−βE(σ)I(σ ∈ Ω0) = lim
β→∞

e−βE0I(σ ∈ Ω0)(100)
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where we have used the fact if σ 6∈ Ω0, in the limit as β →∞, e−βE(σ) → 0. By substituting
99 and 100 back into 98 we obtain:

lim
β→∞

p(σ) =
1

|Ω0| limβ→∞ e−βE0
lim
β→∞

e−βE0I(σ ∈ Ω0)

=
1

|Ω0|
1

limβ→∞ e−βE0
lim
β→∞

e−βE0I(σ ∈ Ω0)

=
1

|Ω0|
lim
β→∞

e−βE0

e−βE0
I(σ ∈ Ω0) =

1

|Ω0|
lim
β→∞

1 · I(σ ∈ Ω0)

=
1

|Ω0|
I(σ ∈ Ω0)(101)

4. Factor graph of probability

Suppose a group of 5 friends are trying to choose between 2 activities, A or B, to go to. 4
of the friends have a preference, with probability pi to choose A and 1 − pi to choose B. The
5th player, enjoying both activities equally, plays the role of an unbias arbitrator. They decide
to play a game of elimination to decide, which follows this structure:

• The 4 friends cast their votes, vi ∈ {A,B}, for the activity.
• Votes from friend 1 and 2 are compared; if their choice of activity coincides, v1 = v2,

that choice, we shall rename v1&2 will represent the two friends as they move to the
next round. If not, the choice representing the two friends will be decided by the fair
arbitrator friend. This same process is carried out for friends 3 and 4 to determine
v3&4.
• With a representative choice for both pairs of friends, the same selection process is used

for the final selection of activity, vf , the group will partake in.
If we consider an arbitrary outcome, v = (v1, v2, v3, v4, v1&2, v3&4, vf ), from all possible

outcomes, Ω = {A,B}7 we see the probability of v can be calculated as:

P (v) = P (v1&2) · P (v3&4) · P (vf ) ·
∏
i

P (vi)(102)

= f1(v1&2, v1, v2) · f2(v3&4, v3, v4) · f3(vf , v1&2, v3&4) ·
∏
i

f3+i(vi)(103)

where for example P (v1&2) = P (V1&2 = v1&2)(104)

=

(
p1p2 +

p1(1− p2) + p2(1− p1)

2

)
δv1&2,A(105)

+

(
(1− p1)(1− p2) +

p1(1− p2) + p2(1− p1)

2

)
δv1&2,b(106)

= f(v1&2, p1, p2)(107)

⇒ P (v1&2) = f1(v1&2, v1, v2)(108)

We have used the fact p1 and p2 are functions of v1 and v2 respectively. Similar equations
hold for P (v3&4) and P (vf ). Finally the indices of the functions fi are used to represent the
different factors of P (v), not uniqueness of the functions. This shows we can write this simple
probabilistic system in a convenient factorised form.
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APPENDIX B

Self Assessment

Overall, I am pleased with the project. In preparation for the write up, I read plenty of
material around the subject. Not all of it was relevant for the write up, but it certainly gave me
a better understanding of the material I decided to add to the report. The direction of the project
was not established early on, allowing me to find interesting papers and consider various routes
into which I could investigate. The numerical aspect of the project was very rewarding. The
code was time consuming to run; taking hours for a single plot. Optimisation of computational
algorithms is certainly something I appreciate now. On the numerical portion of the project, I am
extremely pleased with my understanding of the material presented in the paper. Meeting online
with my supervisor was not an environment conducive of conveying mathematical information,
so I spent a considerable amount of time trying to fully understand the content and I feel proud
of the level of understanding I reached. I made some insightful comments while analysing the
numerical data, however my inexperience with the field prevented me from seeing certain subtle
aspects.

• Student initiative and amount of guidance required: 65
• Scientific Quality: 75
• Breadth: 65
• Originality: 65
• Presentation and logical structure of the report: 80
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