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Abstract

The ground state solution of the random dimer model is at a critical point after, which has

been shown with random link excitations. In this paper we test the robustness of the random

dimer model to the random link excitation by imposing the maximum weight excitation. We

numerically compute the scaling exponents of the curves arising in the model as well as the

fractal dimension. Although strong finite size corrections are present, the results are compatible

with that of the random link excitation. Furthermore, another form of excitation, the ε -

coupling excitation is studied. We find that near-optimal configurations belong to the same

universality class as the travelling salesman problem. Thus, we confirm a conjecture on the

scaling properties of combinatorial optimisation problems, for the specific case of minimum

weight perfect matchings on 2-dimensional lattices.
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Chapter 1

Introduction

The field of statistical physics have tried classify models into universality classes to gain a better

understanding of similarities in disordered systems. Universality implies that in the scaling

limit when a large number of parts interact, systems are independent of dynamical features.

Universality has been observed at critical systems by measuring critical scaling exponents

Recently, the properties of the ground state solution of the random dimer model (RDM) was

studied in [4]. More specifically, the authors showed that the ground state solution of the RDM

is at a critical point. By the means of an accurate numerical algorithm, they showed that local

excitations induce long-range rearrangement with finite probability. Furthermore, the fractal

dimension of the excitations are computed. They find that the RDM on a bipartite graph is

compatible with the loop-erased self-avoiding random walk, while the RDM on a monopartite

lattice belongs to the same universality class 2-dimensional spin glass domain walls.

The partial objective of this paper is to consider the RDM with maximum weight excitations

and compare the results to those found in [4], where the model was studied with the random link

excitation. We are interested in how the curves generated with the maximum weight excitation

behave in comparison to the random link excitation. The goal is to check the robustness of the

RDM to a different form of excitation. Instead of uniformly sampling from the weight distribu-

tion of a given instance, we delete the edge with the largest weight in the ground state solution,

with the expectation that that will cause the most ”damage” to the optimal configuration. A

large-scale Monte-Carlo simulation is undertaken with an exact algorithm to generate instances

of the model. We find that the properties of the curves are in agreement with those found in

[4], although strong finite size corrections distort the numerical estimates.

Furthermore, we examine the sensitivity of the RDM under a smooth excitation, namely

the ε - coupling. The ε - excitation allows to infer the energy landscape of the RDM in close

proximity to the ground state solution. Following the proposed conjecture on the universality of

combinatorial optimisation problems in [1], we study how the minimum weight perfect matching

scales in the presence of ε-couplings on 2-dimensional lattices. Similar scaling exponents are

found to those reported in [17], although finite size corrections are present here too. The

conjecture proposed in [1] appears to hold for the minimum weight perfect matching on lattices

in 2-dimensions.

In chapter 2: Domino coverings and random assignments we present a review of the relevant

literature and key results. In chapter 3: Maximum-weight excitations in random dimer coverings
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the maximum weight excitation of the RDM is analysed, including a discussion about connections

to the random link excitation. In chapter 4: Near-optimal configurations in random dimer

coverings, the study of the RDM under ε - coupling excitations is presented.
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Chapter 2

Domino coverings

and random assignments

The dimer model is part of a family of problems studied in matching theory. It consists in

studying the properties of perfect matchings on a graph. A perfect matching of a graph is a

subset of its edges that covers every vertex exactly once. The underlying graph structure can

be monopartite or bipartite (or more). In the former case the problem is often referred to as

the ”matching problem”, in the latter as the ”assignment problem”. Given a certain graph

G, questions may arise about its the dimer coverings.For example, how many possible perfect

matchings exist on G? Is there a way to count them? What are the properties of such matchings?

In some variations of the dimer model, the edges of the graph carry weights. Such weights

can have different interpretations. For example, weights can represent distances been the vertices

on a Euclidean domain.In such weighted dimer model, the goal is often to find the maximum or

minimum weight perfect matching. Finding the maximum weight perfect matching on a graph

is a computationally heavy but “easy” task (i.e., it belongs to the P computational complexity

class) and it is a well studied combinatorial optimisation problem. The problem has also con-

nections with famous (and harder) computational problems, for example the SAT problem and

the traveling salesman problem.

Moreover, if the weighted dimer model is considered on a two dimensional lattice, its prop-

erties have been shown to be in correspondence with the ones of 2-dimensional spin systems

([4]), which are fundamental models in statistical mechanics. Such systems are given on a 2-

dimensional graph, where the vertices are associated to binary variable, called spins, and links

join interacting pairs. For example, spins can represent the magnetic charge of a pole, or the

direction of voting of the site.

The following review will be structured in three components that outline the key results about

the weighted dimer model. First, the so-called infinite temperature limit will be considered.

Then some results on the zero temperature limit will be given. Finally, some computational

techniques to solve the problem will be reviewed.
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2.1 Domino tilings

When studied on a subset G of Z2, the dimer model is equivalent to the tiling problem of a

2-dimensional grid by means of dominos, which are are 2× 1 and 1× 2 rectangles. A tiling is a

covering of the grid such that all squares are covered, and there is no overlap between dominos

and no dominos hang off of the edges of the grid. See for example Fig. 2.1 where G is the 8× 8

square grid.

Figure 2.1: Domino tiling of an 8× 8 chessboard.

Given G ⊂ Z2, counting the number of tilings on it is a hard task. One of the most

famous results about this problem is the number of domino tilings (perfect matchings) on a

finite rectangular lattice, that was obtained independently by Kasteleyn [12] and Temperley

and Fisher [22] through computing the partition function.

Let G(E, V )m,n be an m× n rectangular lattice. The partition function Z of G can be ob-

tained by defining a positive weight w(e) > 0 for all edges. Then, the weight of each configuration

is:

w(C) =
∏
e∈C

w(e) (2.1)

where the product runs over all edges of a configuration. The partition function is then defined

by

ZG =
∑
C

w(C) =
∑
C

∏
e∈C

w(e) (2.2)

where the sum runs over all possible dimer coverings. If we set w(e) = 1 for all edges than ZG is

equal to the number of valid dimer coverings on G. Kasteleyn showed that the number of dimer

coverings of a finite rectangular lattice can be constructed by assigning the following weights to

the edges:

Ku,v =


1, if (u, v)is horizontal edge

i, if (u, v)is vertical edge

0, otherwise

(2.3)
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from which the number of valid configurations is

Zm,n =
√
|detK| =

∣∣∣∣∣∣
m∏
j=1

n∏
k=1

2 cos

(
πj

m+ 1

)
+ 2i cos

(
πk

n+ 1

)∣∣∣∣∣∣
1
2

. (2.4)

For example, for a chessboard like the one in Fig. 2.1, which is an 8 × 8 square lattice, the

number of perfect matchings is Z8,8 = 12988816. In the large m,n limit it can be shown that

(2.4) simplifies to:

lim
m,n→∞

1

mn
logZm,n =

1

2π2

∫ π

0

∫ π

0
2 cos θ + 2i cosφ dθdφ =

G

π
(2.5)

where G = 1
12
− 1

32
+ 1

52
− ... is Catalan’s constant.

2.1.1 Height function and conformal invariance

Domino tilings on a rectangular grid are homogeneous. Roughly speaking, this means that a

randomly drawn tiling will look random from the set of all tilings to the human eye. However,

this is not the case for all graph structures. Consider the Aztec Diamond shape, shown in Fig.

2.2. Given a tiling uniformly and randomly extracted from the set of all possible tilings, a

frozen region will likely appear, where the dominos around the edges align, thus the covering is

no longer uniform. This is the so-called arctic circle phenomenon, and it has been studied by

means of an auxiliary tool, the height function [14] .

Figure 2.2: The Aztec diamond domain with an example of a covering that shows the arctic
circle phenomena.

The height function is a Z-valued function defined on the vertices of the tiling, and it is

given up to a global additive constant. The height of a domino covering of a graph that has a

chessboard-like coloring of black and white squares can be calculated with an iterative procedure:

start with any vertex and set the height there to 0. Then by following the edges of the domino

tiling calculate the height of subsequent vertices. Increase the height by +1 if there is a black

square to the left of the edge, and decrease the height by −1 if there is a white square to the left

6



of the edge. If there is no square to the left of the edge, then do the opposite for the color of the

square on the right. The height function of a tiling is then a map from Z2 to Z. A domino tiling

uniquely defines a height function and vice versa. The coordinates given by the height function

outline a surface with support on the surface that has been tiled. The artic circle phenomenon

is then studied in terms of the statistical properties of the set of feasible height functions on the

given domain.

In [14] the authors show that, in the limit of lattice spacing going to 0, the height distribution

of a random tiling is conformally invariant, and thus certain macroscopic properties of the tiling

itself are conformally invariant. Conformal invariance is strong form of 2-dimensional invariance

that emerges in statistical mechanics models. It can be broken down into three weaker forms

of symmetries: translational symmetry, rotational symmetry and scale invariance. All three

invariance properties need to be satisfied for conformal invariance. For systems with disorder,

conformal invariance may appear after averaging over multiple instances of the system, which

removes the instance specific heterogeneity.

Proving conformal invariance in probabilistic and physical models has been of central impor-

tance for mathematicians and physicists. The presence of conformal invariance allows for the

application of a large set of tools of conformal field theory and the reduction of the model them-

selves to very few informative numbers corresponding to the so-called universality classes of the

models themselves. In the 1970s Alexander Polyakov predicted that lattice models at criticality

exhibit this invariance but his statement has remained unproven for decades. S. Smirnov was

able to prove conformal invariance in the scaling limit for percolation on the triangular lattice

in [20] and later for the Ising model at criticality [21]. For his work on conformality of lattice

models he received the Fields medal. Conformal invariance for the loop-erased random walk

and the uniform spanning tree, and their convergence towards a special family of conformally

invariant processes, called SLE processes (see below), was shown by O. Schramm in [19].

With respect to the dimer model, R. Kenyon showed that the measure of the height function

of the dimer coverings is conformally invariant as the lattice spacing tends to zero. Furthermore,

in [15] Kenyon proves that the loops in the double dimer model are conformally invariant and

converge to an SLE4 process.

2.1.2 Schramm-Loewner Evolution

The Schramm-Loewner evolution (SLE), indexed by parameter κ as SLEκ,is family of stochastic

processes in the complex plane. There are two main variants: chordal SLE, which give a family

of curves between two fixed boundary points on the upper half of the complex plane H and

radial SLE which gives a family of curves between a fixed boundary and fixed interior point on

the unit disk D.

SLE was discovered by Schramm in [19] and later developed by W. Werner and G. Lawler

who were awarded the Fields medal for their work. Models such as the loop-erased self avoiding

random walk, the uniform spanning tree, the critical Ising model, the dimer model, the double

dimer model and percolation Potts model have been shown to belong to SLEκ. An SLEκ curve

γ(t) defined on the upper half complex plane H is given by γ(t) = g−1
t (ξt) where gt solves the
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Loewner differential equation
∂gt(z)

∂t
=

2

gt(z)− ξ(t)
(2.6)

with boundary condition g0(z) = z. The equation depends on the driving function ξ(t), which

is a Brownian process with mean 〈ξ(t)〉 = 0 and variance 〈ξ2(t)〉 = κt. The curves satisfy

conformal invariance: they are self-similar under conformal mappings. The curves also satisfy

domain Markov property: given a curve γab that lies between two boundary points a and b, the

domain Markov property states that the probability of a segment PD(γcb) conditioned on the

rest of the curve γac is identical to the probability of the original curve on the cut domain D\γac
conditioned on starting at c

PD(γcb|γac) = PD\γac(γcb|c). (2.7)

From the definition it is clear that the only parameter of the process is κ. It can be shown

that for κ ≤ 4 the curves are simple with probability 1, for 4 < κ < 8 the curves have double

points and all points are contained within a loop and for κ ≥ 8 the curves are space filling with

probability 1, see Fig. 2.3. Finally, SLE objects are fractal objects. The formula that connects

the variance of the driving function κ and the fractal dimension of the curve df is df = 1 + κ
8 .

/

Figure 2.3: SLE curves for different values of κ. Image taken from [9]

2.2 Criticality and conformality in spin glasses

There exists a one-to-one correspondence between the 2-dimensional Ising model and the 2-

dimensional dimer model. This bijective mapping was developed by Fisher in [10]. The method

maps the Ising model on a graph G embedded in the torus to the dimer model defined on a

decorated version of GF of G, called Fisher graph. By means of this mapping, the study of the

Ising model reduces to the study of the dimer model on the Fisher graph, which explains why

the dimer model has become of such high importance amongst physicists. For a full description

and proof of the mapping see [10]. This fact also motivates the following short overview on spin

glasses, and a discussion of the characteristics of such models at the critical temperature.

2.2.1 The Ising model and spin-glasses

Spin glasses are disordered magnetic materials characterized by randomness in the interactions.

Before giving a more precise definition of a spin-glass, let us introduce the standard Ising model,
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a cornerstone of statistical mechanics. The Ising model is defined on a graph G, where each

vertex i is associated to a spin σi ∈ {±1}. A spin configuration σ is an assignment of spin to

each lattice site. The energy of a spin configuration is given by the Hamiltonian:

H = −
∑
〈i,j〉

Jijσiσj −
∑
j

hjσj (2.8)

where the sum 〈i, j〉 runs over nearest neighbour spins. The configuration probability is given

by the Boltzmann distribution for the fictitious inverse temperature parameter β = 1
T

Pβ(σ) =
1

Z
e−βH(σ) (2.9)

where Z is the normalisation constant, or partition function:

Z =
∑
σ

e−βH(σ). (2.10)

L. Onsager provided a solution to the partition function of the Ising model on a two dimensional

square lattice in 1944 with the celebrated transfer matrix method assuming Jij ≡ J . The model

has a phase transition at finite temperature Tc = 2J
ln(1+

√
2)

.

Ising spin glasses are Ising spin systems with quenched disorder in the couplings Jij . A

system is quenched when the parameters describing disorder do not depend on time, they are

”frozen” in time. A typical example of a quenched spin glass is the Edwards-Anderson model

with the Hamiltonian

H = −
∑
〈i,j〉

Jijσiσj (2.11)

defined on a d-dimensional hypercubic lattices, where Jij are Gaussian random variables. Disor-

der creates frustration in systems as it becomes impossible to satisfy all of the couplings. That

means that if from initial spin we fix the other spins in a chain in the graph G, opposing effects

and thus a contradiction might arise. To deal with disorder, self-averaging quantities are stud-

ied. Self-averaging quantities do not depend on the specific realisations of the system when the

size N of the system goes to infinity, and allow the building of the theory of the spin glasses.

For example the free energy is a self-averaging quantity

F := lim
N→∞

FN (β, J) = lim
N→∞

− 1

βN
log

∫
dσe−βH(σ,J = F∞(β) (2.12)

where in the N →∞ limit F no longer depends on the random realisation of J (but it does on the

distribution of J). The computation of F usually requires the use of sophisticated techniques.

The result is expressed in terms of the distribution of order parameters taking the form of

overlaps. The overlap quantifies the similarity between two configurations of spins. Given two

configurations σ and τ the overlap between them is

qστ =
1

N

N∑
i=1

σiτi (2.13)
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which is 1, if the two configurations are identical, −1 if completely opposite and 0 if they are

uncorrelated for Ising spins.

2.2.2 Phase transitions

A phase transition is a qualitative change in the state of a system under a continuous change

in an external parameter. A physical example of a phase transition is when water reaches the

boiling point it evaporates, resulting in an abrupt change in its volume, thus going through a

phase transition. The point where the phase transition occurs is called the critical point. At the

critical point the two phases of the material have equal free energies thus are equally likely to

exist. There are two main classes of phase transitions: first order phase transitions that involve

latent heat; and second order phase transitions or continuous phase transitions, with no latent

heat but diverging correlation length at criticality.

The aforementioned EA model exhibits a phase transition at a critical temperature Tc in the

N →∞ limit. In this limit, the length scale governing fluctuations – the correlation length ξ –

diverges to infinity. At this critical point, observables such as the heat capacity and susceptibility

show singularities. As a consequence of diverging correlation lengths, the macroscopic properties

of the model become highly nonlinear.

To better understand the properties of the EA in 2d at criticality, Hartmann and Young [11]

investigated the EA model. Consider the Hamiltonian

H = −
∑
〈i,j〉

Jijσiσj (2.14)

where the sum runs over all pairs of nearest neighbours on the 2D square lattice, σi = ±1 and

Jij are quenched random variables. Two kinds of disorder are considered:

1. Jij is a standard normal random variable;

2. Jij = ±1 with equal probabilities (bimodal distribution).

By means of a polynomial time algorithm to calculate the minimum-weight perfect match-

ing, and using the mapping between 2d Ising model and matching, they were able to efficiently

compute the ground state energy E0 of the system. At this point, one of two types of perturba-

tions is introduced in the model: (i) changing the periodic boundary conditions to anti-periodic,

which means swapping the signs of the edges that cross the boundary and (ii) changing the free

boundary conditions to periodic ones.

The excitation forces the system to move from its former lowest energy ground state to a

higher energy excited state. Note, that in context of lattice models excitations can take many

forms, for example the removal of links/vertices, changing the weights on the edges or changing

the boundary conditions are all different forms of excitations. After the perturbation the new

perturbed energy Epertrb
0 of the model is calculated by rerunning the algorithm. The average

difference in the energy is given by ∆E = 〈Epertrb
0 − E0〉. It is expected that the change in

average energy will vary as a function of the system size L as ∆E ∼ Lθ. Here L is the number

of vertices in one direction and θ is referred to as the stiffness exponent. The stiffness exponent

is informative about the criticality properties of the system: indeed, the correlation length ξ
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is expected to diverge at zero temperature for θ ≤ 0. The exponent θ was estimated in both

settings. For the Gaussian disorder the numerical results match previous results that θ < 0,

hence the lower critical dimension, which is the largest dimension at and below which phase

transitions do not occur is dc > 2. Surprisingly, the ∆E in the Ising model with Bimodal

disorder is found to saturate at a non-zero value for L → ∞ which indicates that θ = 0, hence

the lower critical dimension is exactly dc = 2. Criticality and then further universality1 in the

3-dimensional Edwards-Anderson model and the Ising model with bimodal disorder has been

also investigated in a large scale Monte Carlo simulation in [13]. All models are shown to belong

to the anticipated universality class by estimating the overlap between the models and their

excited counterparts. Strong finite size corrections are present in the study.

SLE in spin glass models

Proving the relation between SLE and Ising spin glasses at criticality has attracted large efforts

over the years. If true, it allows the usage of methods from stochastic calculus and conformal field

theory, which are rich areas of research themselves. SLE curves need to satisfy two properties:

conformal invariance and domain Markov property.

In [2] and [3] various numerical tests are applied to study the conformal invariance of domain

walls in the 2-dimensional Ising spin glasses with Gaussian bond distribution at criticality. Even

though there is random disorder in the model on the microscopic level, the divergent correlation

length suggests that at the critical point long range interactions are dominant and conformal

invariance could arise.

In particular, in [2] a conformality test is applied to the domain wall based on the hypothesis

that the domain wall will cross a predetermined fixed line in the domain n times with the same

probability as it crosses that same line n times after the application of a series of conformal

maps to the original geometry. The naive expectation would be that because the conformal

transformation of the geometry introduces slits (on purpose) in the transformed geometry, the

probability of crossings decreases. In actuality, the opposite is found. As system size increases,

the probability of domain wall crossings show convergence between the two conformally equiv-

alent geometries. The domain wall is mapped then to the complex upper half plane. Assuming

then that the domain wall is indeed a SLE process, the variance of the driving function κ is

estimated to be κ ≈ 2.1. Furthermore, a relationship between the stiffness exponent θ, which

was calculated in [11] and the fractal dimension df of the domain wall is found to satisfy the

relation:

df = 1 +
3

4(3 + θ)
(2.15)

In [3] several different SLE tests are applied to domain walls of the EA model on a triangular

lattice on the annulus. The fractal dimension df is estimated from a scaling ansatz and is found

df = 1.28, which is consistent with previous literature. For the conformal invariance of the

domain wall, an important result from the theory of SLE curves is used: without going into too

much detail, it is possible to calculate the probability that an SLE curves passe a point in the

complex plane to the left [18]. This probability is calculated for the domain walls, and matches

1Universality says that critical exponents do not depend microscopic properties but only on broad features,
for example the dimensions of the problem or the type of randomness in the model.
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the expectations. The diffusion parameter κ ≈ 2.32 is slightly higher than in [2], but remains

within the range commonly quoted in other papers. Finally, a test for the Markovian property

of the driving function ξ(t) was performed. The driving function ξ(t) was obtained by mapping

the domain wall to a real valued sequence ξ(ti) and then interpolated. For SLE, the generated

curve is a Brownian motion with diffusion parameter κ. The correlation between subsequent

values of ξ(t) defined as: Cd(n) = 〈(ξ(ti+n+1)−ξ(ti+n)(ξ(ti+1)−ξ(ti)〉 is calculated; and found to

decay rapidly for n = 2 to n = 8. Note, that due to the structure of the problem, some edges are

forbidden which induces some short term correlation, hence the driving function is Markovian.

The test for the domain Markov property of the system after averaging fails asymptotically,

however only small system sizes were checked thus for larger systems the property might still

hold.

Excitations or perturbations of the EA model have been also used to estimate the fractal

dimension of the domain walls (studying the induced rearrangements) or their robustness.

In [6], for example, a specific quenched Ising model is considered, namely the bond diluted

Ising model (BDIM). This is a ferromagnetic spin system on the square lattice where pairwise

interactions between vertices are nullified with probability d. The Hamiltonian of the system is

as (2.14), where Ji,j are i.i.d. random variables with P (Ji,j) = (1− ρ)δJi,j ,J + ρδJi,j ,0. The aim

of the paper is to study the interface between opposite magnetisations, and its dimension df , as

a function of the dilution parameter ρ. The “clean state” corresponding to ρ = 0 is used as a

reference point. The quench is introduced at time t = 0 in the infinite temperature equilibrium

state and then evolved with Glauber update rates:

w(σi → −σi) =
1

2

[
1− σi tanh

∑
〈i,j〉 Jijσj

T

]
(2.16)

where T is the final temperature of the quench. The average size of the growing domain R(t, ρ)

for ρ = 0 satisfies the scaling law

R(t, 0) ∼ t
1
2

however, for 0 < ρ < 1
2 = ρc the curve is dependent on ρ, and the growth is slower compared

to the clean state. At this point, the fractal dimension is extracted by measuring the average

squared winding angle 〈θ2(r, t, ρ)〉 between points at distance r on the perimeter of the domain

wall. The winding angle variance is known to behave as 〈θ2(r)〉 ∼ 4
(

1− 1
df

)
ln r for self-similar

interfaces (and in particular, as we will discuss, SLE curves). The authors show that at dilution

ρ = 0 the fractal dimension of the domain wall is df = 4
3 . With dilution ρ > 0 the relationship

between the distance r and 〈θ2(r, t, ρ)〉 can be deconstructed in two different regimes depending

on the ratio r/rcross, where rcross is a crossover scale. This is explained by the the natural

length of the domain R(t, ρ)df such that 〈θ2(r, t, ρ)〉 behaves differently for r � R(t, ρ)df and

for r � R(t, ρ)df . Consequently, the fractal property of the domain is different on short vs. long

scales and is dependent on dilution ρ. This result is at variance with the fractal dimension of

the random bond Ising model, where the fractal dimension is described by a unique exponent

irrespective of the bond disorder. Even though the BDIM is a similar model to the random field

and random bond Ising model, they do not belong to the same universality class. The BDIM

shows similar scaling on measured observables: crossing probabilities, averaged squared winding
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angle and pair connectedness, however the scaling is always dependent on the disorder, which

is not the case for the reference models. In the following we will show more precisely how the

fractal dimension of general SLE can be extracted by studying the behavior of the variance of

the winding angle 〈θ2〉.

SLE in the FK random cluster model

The winding angle variance is a good tool for the study of fractal dimensions of SLE curves.

For example it has been considered in [24] for the contours in the 2D Fortuin-Kasteleyn (FK)

random cluster model. The FK cluster model is a bond percolation model with bond dilution

parameter p with an additional parameter q on clusters. The variance of winding angle at points

where k strands of the perimeter of the cluster connect as well as for the external perimeter.

The winding function r(•) on the edges is constructed by starting from an arbitrary edge e

on the perimeter and then setting the value of r(e′) at a neighbouring edge to r(e′) = r(e) +

turning angle between (e, e′). For this model too, the connection

df = 1 +
κ

8
(2.17)

between the wining angle variance, the fractal dimension and SLEκ is confirmed to hold.

Figure 2.4: Contours of the perimeter and external perimeter of the FK cluster model. Image
from [24]

SLE in the random dimer model

Until this point in the chapter, we have seen that curves arising in various lattice models exhibit

conformal invariance as well as similarities in their fractal dimension are found. Utilising the

techniques and ideas from those papers, the authors of [4] take into consideration the random

dimer model. For a formal introduction to the model see Ch. 3.

Random link excitations are applied to the random dimer model, such that a new optimal

configuration arises. Once overlaying the ground state configuration and the optimal excited

configuration, a cycle appears on the lattice. It is shown that the ground state solution of the

RDM is at criticality and furthermore, the cycles show signs of conformal invariance. There is
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evidence in [4] that the RDM on a bipartite lattice - square grid, hexagonal grid and random

euclidean assignment problem - belong to the same universality class as the 2-dimensional self-

avoiding random walk with Df ' 1.252 and are compatible with an SLEκ with κ = 2, while the

monopartite models - triangular lattice and random euclidean matching problem - are compatible

with domain walls in 2d spin glasses with Df ' 1.274.

Finding the ground state of the random dimer model is analogous to a combinatorial op-

timisation problem, namely the minimum weight perfect matching. In the next section Sec.

2.3 a short overview of an algorithm that finds the optimal configuration from an optimisation

perspective is presented.

2.3 Optimisation toolbox

In the weighted dimer model the objective is no longer to count all the possible dimer coverings,

but to find the maximum (or minimum, the problems are equivalent) weight perfect matching.

The maximum weight perfect matching is defined as the covering that maximises the sum of

weights that are in the covering. However, finding the maximum weight perfect matching is in-

feasible by first finding all possible domino tilings, and then selecting the one with the maximum

weight as the number of configurations rise rapidly with system size. Combinatorial optimisation

techniques have been developed to solve this problem.

Combinatorial optimisation theory is a subfield of mathematics that deals with searching for

the maxima of an objective function whose domain is a discrete but large configuration space.

Famous examples in the field are the traveling salesman problem, where the objective is, given

a list of cities and distances between all of them, what is shortest path that connects N cities

exactly once; or the boolean satisfiability problem, where the objective is to assign values to a

set of variables to satisfy a given boolean expression.

Solving the assignment problem or finding the maximum weight perfect matching of a graph

is also a well studied combinatorial optimisation problem. As shown in [12], the number of

domino tilings on a grid is very large, thus the brute force approach of looking at all the

possible combinations to find the one with the lowest sum of weights is not feasible. Instead,

polynomial time algorithms have been developed that solve the assignment problem. That

makes the problem P hard2. Edmond’s blossom algorithm is one example of a polynomial time

algorithm that solves the assignment and matching problems. This is the algorithm adopted in

this analysis presented in this report, and it is briefly discussed below.

2.3.1 Edmond’s blossom algorithm

Edmond’s blossom algorithm was developed by Jack Edmonds in 1961 and published in 1965

in [8]. The algorithm finds the maximal matching of a graph G = (V,E) in time complexity

O(V 2E). Since the original paper, multiple improvements have been added to improve perfor-

mance, for example [16]. Here, only the unweighted case is described for brevity, see [16] for a

full description.

2The P vs. NP problem is one of the unsolved Millennium Prize problems that asks whether every problem
whose solution can be quickly verified can also be solved quickly.
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In the unweighted case, the algorithm starts with a random matching M and then iteratively

finds edges to improve by scanning for an augmenting path P . An augmenting path is an

alternating path that starts and ends on exposed vertices and alternates between edges that

belong to the matched set e ∈M and edges that do not e /∈M . A vertex v is exposed if no edge

e ∈ M is incident to v. The algorithm takes advantage of Berge’s lemma, which says that a

matching M is maximal iff there is no augmenting path in M . If an augmenting path is found a

new matching is modified to Mnew = M⊗P . The algorithm is then iterated until no augmenting

path is found, at which point there are 2 possibilities: (i) M is not a possible maximal matching

and no maximal matching exists thus the algorithms exits or (ii) a maximal matching is found

and the algorithm returns M .

A central part of the algorithm are blossoms, which is where the name comes from. Blossoms

reduce cycles of odd length to a single vertex so that the search for augmenting paths happen

on the contracted graph.

Figure 2.5: Illustration of how the blossoms are contracted into a single vertex. Image from
https://brilliant.org/wiki/blossom-algorithm/

.

Blossoms improve the efficiency of finding augmenting paths, as exposed vertices are guar-

anteed not to be in a blossom. Blossoms also allow the Hungarian algorithm, discussed below,

to be deployed, which is defined on bipartite graphs only.

2.3.2 Hungarian algorithm

The Hungarian matching algorithm finds the maximum weight perfect matching on a bipartite

graph. One of its limitations is that it is constrained to bipartite graphs, however the blossom

algorithm generalises that to monopartite graphs as well. It was named after Hungarian math-

ematicians Dénes Kőnig and Jenő Egerváry for their work on graph theory that forms the basis

of the algorithm.

Definitions:
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• A labeling on a graph G = (V,E) is a function l : V → R such that

∀(u, v) ∈ E : l(u) + l(v) ≥ weight(u, v) (2.18)

• Kuhn–Munkres Theorem: Given a labeling l, if M is a perfect matching on Gl, than it is

the maximum-weight perfect matching.

The algorithm works by iteratively improving the labeling on the graph to take advantage

of the Kuhn–Munkres theorem. Let M ′ be any perfect matching on G. Then, by the definition

of the labeling function

weight(M ′) =
∑

(u,v)∈M ′
weight(u, v) ≤

∑
(u,v)∈M ′

l(u) + l(v) =
∑
v∈V

l(v) (2.19)

This means that
∑

v∈V l(v) is an upper bound on the cost of any perfect matching. Thus, the

maximum weight perfect matching M will satisfy

weight(M) =
∑

(u,v)∈M

weight(u, v) =
∑
v∈V

l(v) (2.20)

Hence, the algorithm works as follows: start with a matching M and a valid labeling l. Look

for an augmenting path in M . If there is no augmenting path and M is not the maximum weight

matching, than improve the labeling l and then repeat from the previous step. The algorithm

converges deterministically and has time complexity O(V 3).
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Chapter 3

Maximum-weight excitations

in random dimer coverings

3.1 Random Dimer Model

The random dimer model is the disordered version of the dimer model. Consider the dimer

model on a graph G(V,E) where V is the vertex set and E is the edge set, and assign weights to

all edges e ∈ E from a continuous distribution q(w) as independent and identically distributed

random variables. A dimer covering of the model is a subset of edges such that every vertex is

covered exactly once. We can assign a cost E[D] for all dimer coverings of the graph as

E[D] =
∑
e∈D

we. (3.1)

The minimum weight perfect matching corresponds to the covering that minimises (3.1) and

is the ground state of the random dimer model. From a thermodynamic point of view, the

partition function of the random dimer model can be formulated as

Z(β) =
∑
D

e−βE[D] (3.2)

for a fictitious inverse temperature parameter β = 1
T . The Z(0) configuration counts the number

of dimer coverings which was discussed in further detail in the Sec. 2.1. The ground state

configuration of the random dimer model is defined as:

E[D∗] = min
D

E[D] = − lim
β→∞

1

β
lnZ(β). (3.3)

In this paper lattice graphs are examined, where multiple viable dimer coverings exist. Given

that weights are randomised from a continuous probability distribution q(w), the ground state

solution of the model is almost surely unique. Three different kinds of lattices are considered.

The honeycomb (H) lattice, the triangular (T) lattice and the square (Q) lattice, see Fig. 3.1.

Periodic boundary conditions are imposed in all directions, modifying the graph topology from

a square into a torus T 2, which is a product of 2 circles T 2 = S1 × S1.

Each lattice has L × L number of vertices placed down in the desired shape such that all
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edges have length 1. Note that the H and Q lattices are bipartite and thus 2N = L2 vertices

are generated, whereas the T lattice is monopartite and N = L2 vertices are generated.

Figure 3.1: Examples of the honeycomb (H), square (Q) and triangular (T) lattices for L = 4.
Image from [4].

Finding the ground state of the random dimer model by finding all possible dimer coverings

and then selecting the one with the lowest cost is infeasible due the vast number of configurations.

Instead, Edmonds’ Blossom algorithm is used that finds the maximum weight perfect matching

by iteratively selecting the optimal edges. For an overview of how the algorithm works see Sec.

2.3.1 on combinatorial optimisation. The implementation of the blossom algorithm is executed

by the LEMON C++ library, created by [7] that has O(EV log(V ) time complexity, where E

and V are the number of edges and vertices of the graph. The code ran on a machine with 4

cores and 8GB RAM memory.

3.2 Maximum weight excitation

In this chapter, we introduce the random dimer covering problem using a ‘maximum weight exci-

tation’. The maximum weight excitation that we will investigate is a variation of the random link

excitation studied in [4]. As in the model therein, each edge weight we is randomly drawn from

an exponential distribution q(w) = e−w, which completely defines the model setup. The ground

state solution D∗ is found numerically solving for the optimal dimer covering. Subsequently, the

edge with the maximum weight

ê = arg max
e∈D∗

we

is deleted. Observe that in [4] a random edge is deleted. The matching algorithm is then rerun

on the lattice where ê has been removed to find the new optimal solution D∗ê which therefore

will not contain the edge ê. The new optimal solution is necessarily at a higher cost than the

ground state, as otherwise the ground state would be incorrect. The difference is defined as:

∆Eê = E[D∗ê ]− E[D∗] (3.4)

which is always non-negative. To analyse the effect of the perturbation, we consider the sym-

metric difference between D∗ê and D∗:

Sê = {e ∈ E : e ∈ D∗ê4D∗} (3.5)
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where the symmetric difference operator selects the edges that are either in the ground state

or the excited state, but not in both. The procedure is repeated for a number of iterations:

assigning a set of random weights to taking the symmetric difference between the excited and

ground state defines one iteration of the model. The output of such an iteration is a closed cycle

Sê.

Figure 3.2: Example of a cycle on T2 after overlaying the ground state and the maximum weight
excited state as described in (3.5). The graph type is a bipartite square lattice with 2N = 100
and cycle length Sê = 784.

The objective of this Chapter is to study the properties these closed curves and relate the

findings to the results found in [4]. The motivation behind the study is to see how sensitive the

reported critical exponents are to a different kind of excitation, namely the maximum weight

excitation. In [4] strong signs of criticality and conformality were shown for the generated curves

after a random link excitation. The random link excitation has a uniform measure over all the

links, thus after averaging out individual randomness the underlying properties of the curves

arise. In the excitation studied in this paper, the edge ê with the maximum weight generates

a (expected) larger rearrangement. It is indeed a sort of “worst case scenario” from a stability

perspective, but still induced by a local perturbation. The question remains: do the curves

generated after a maximum weight excitation exhibit the same kind of critical behaviour?

The model was investigated for a range of system sizes: 8 ≤ L ≤ 160 for all lattice types

and the reported values are averages of 104− 105 instances. Ideally, the model under study here

could be ran for larger system sizes, however due lack of computational power it was infeasible.

3.3 The distribution of the excitation size

To understand the robustness of the scaling exponents reported in [4], the same exponents are

estimated for the maximum weight excitation. The maximum weight excitation selects the edge

with the maximum weight and thus it is expected to create the most ”damage”. As a result, we
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expect longer curves on average with the same properties overall.

Consider the probability distribution function P [Sê > s] for a curve length greater than s.

From scaling theory, the form of such probability distribution is:

P [Sê > s] = s−ζρ

(
sλ

L

)
(3.6)

where ρ is some continuous and homogeneous scaling function that satisfies 0 < limz→∞ ρ(z) <

∞.

This scaling ansatz is numerically approximated for all models considered. In Fig. 3.3 we

report the numerical estimates of the previous quantity for different sizes. It is clear that a power

law tail develops in all considered cases. The power law implies that local excitations induce

long range rearrangements with non-zero probability in the N → ∞ limit. This proves once

again that the ground state solution of the random dimer model is at a critical point. The size

of the system naturally gives an upper bound to the maximum size of Sê. Hence, strong finite

size corrections are present. The values of the exponent ζ were found by fitting a power-law tail

to the data depicted in Fig. 3.3. The reported estimates for the exponents can be seen in Table

3.1.

The estimates for ζ from measuring the slope of the power law tail match with the reported

values in [4] for all models to the first decimal point. For the Q model, the values are within

1 standard deviation of the mean thus there is complete agreement. For the H and T models

the values are underestimated, there is a disagreement from the 2.decimal point. This can be

the consequence of strong finite size scaling bounds induced by the physical limit of the models.

In [4] larger system sizes with many more instances were considered which explains the slight

disagreement between the values.

A known difference between the different lattice structures also holds. The H and Q lattices

are bipartite and they belong to a different universality class than the monopartite L lattice.

The magnitude of the exponents in the two universality classes coincide with [4].

3.4 Estimating the fractal dimensions

The fractal dimension Df of the loop quantifies the complexity in the curves as the fraction

between the rate of change in detail to the rate of change in scale. It is fundamentally related

to SLE and is highly relevant to describe characteristics of random curves. Assuming that the

average length of the cycle scales as:

〈Sê〉 ∼ Lα (3.7)

which is reasonable after observing the power law relationship in Fig. 3.4. From, (3.6) we have

〈Sê〉 =

∫ ∞
0

s

[
∂

∂s
P [Sê > s]

]
ds (3.8)

=

∫ ∞
0

s

[
∂

∂s
ρ

(
sλ

L

)]
ds (3.9)

=

∫ ∞
0

s−ζρ

(
sλ

L

)
ds (3.10)
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Figure 3.3: Cumulative distribution of Sê for all models. The system sizes considered are from
L = 8 to L = 256. The sharp decays indicate strong finite size corrections.

where in the last step we integrated by parts. Substituting in u = sλ

L we get

〈Sê〉 =
L

1
λ

λ

∫ ∞
0

(uL)
−ζ
λ ρ(u)u

1
λ
−1du (3.11)

and then separating the L - dependent and -independent terms we get

〈Sê〉 ∝ L
1−ζ
λ ∼ Lα ⇒ α =

1− ζ
λ

. (3.12)

To get rid of λ, we consider another quantity of interest, namely the gyration radius of a

cycle, defined as

R2
ê =

1

2S2
ê

∑
i,j

d2(ri, rj) (3.13)

where ri is the position of the ith node and d2(•, •) is the squared distance between the points.

The sum runs over all pairs of vertices in a cycle. The gyration radius satisfies the form of a

power law that is conditioned on the cycle length as:

〈R2
ê〉Sê=s = s2D−1

f g

(
sλ

L

)
(3.14)

where g has the same properties as ρ from (3.6). Now, assuming the gyration radius (without

conditioning) scales

〈R2
ê〉 ∼ Lγ (3.15)
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which can be confirmed visually from Fig. 3.4. Inserting (3.6) we have

〈R2
ê〉 =

∫ ∞
0
〈R2

ê〉Sê=s
[
∂

∂s
P [Sê > s]

]
ds (3.16)

=

∫ ∞
0

[
2D−1

f s2D−1
f −1g

(
sλ

L

)
+ s2D−1

f
λsλ−1

L
g′
(
sλ

L

)][
s−ζρ

(
sλ

L

)]
ds (3.17)

where we integrated by parts. Substituting in u = sλ

L we get

〈R2
ê〉 =

∫ ∞
0

[
(uL)

2D−1
f
−1

λ g(u) + (uL)
2D−1
f
λ

λ(uL)
λ−1
λ

L
g′(u)

] [
(uL)

−ζ
λ ρ(u)L

1
λ

1

λ
u

1
λ
−1

]
du (3.18)

and separating the L-dependent and L-independent terms we get

〈R2
ê〉 ∝ L

2D−1
f
−ζ

λ ∼ Lγ ⇒ γ =
2D−1

f − ζ
λ

. (3.19)

Combining the expressions (3.12) and (3.19) on the exponents α, γ and ζ, we can get rid of

λ and the fractal dimension Df can be expressed as

Df = 2− γ + α (3.20)

ζ =
2− γ
Df

(3.21)

which allows the calculation of the fractal dimension from the exponents α and γ, which in turn

are measurable through accurate numerical simulations.

The measurement of these two exponents was accomplished by fitting ln〈S〉 and ln〈R2〉
against lnL with a function of the form

f(x) = ω(1) + ωx+ ω(2)e−ω
(3)x (3.22)

where ω, ω(1), ω(2) and ω(3) are free parameters. The additional exponential term is needed

to account for the finite-size corrections to the asymptotic regime. A more refined way to

extrapolate the exponents in the L → ∞ limit is the method of ratios introduced in [5] and

adopted in [4]. We are however unable to perform that technique due to lack of reliable data:

instead, an additional term with the argument and two free parameters ω(2) and ω(3) has been

added to the fitting function f(x).

Hence, to estimate α for the scaling of the average cycle length 〈Sê〉 ∼ Lα, f(x) is fitted as:

ln〈Sê〉 = α(1) + α lnL+ α(2)L−α
(3)
. (3.23)

To measure γ for the proposed scaling of the gyration radius 〈R2
ê〉 ∼ Lγ , f(x) is fitted as:

ln〈R2
ê〉 = γ(1) + γ lnL+ γ(2)L−γ

(3)
(3.24)

The function fits are implemented through SciPy’s [23] curve fit method. The parameter value

estimates are found in Table 3.1.
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H Q T

〈∆Eê〉 1.283(4) 0.759(7) 0.454(2)
α 0.576(11) 0.591(17) 0.867(3)
γ 1.290(3) 1.208(18) 1.507(7)
ζ (from fit) 0.579(1) 0.602(2) 0.341(1)
ζ 0.552(18) 0.573(53) 0.363(19)
Df 1.287(14) 1.383(35) 1.360(11)
κ 2.093(7) 2.035(4) 2.168(4)
Df (1 + κ

8 ) 1.262(1) 1.254(1) 1.271(1)

Table 3.1: Average ground state cost, average change in the energy and scaling exponent esti-
mates. Values in brackets indicate statistical errors.

H Q T

〈N−1E[D∗]〉 0.703(1) 0.355(1) 0.529(1)
〈∆Eê〉 1.115(1) 0.655(1) 0.380(1)
α 0.508(2) 0.506(1) 0.827(1)
γ 1.259(1) 1.252(2) 1.554(1)
ω 0.74(2) 0.65(2) 1.00(2)
ζ 0.593(1) 0.597(1) 0.350(1)
ζ (from fit) 0.593(1) 0.595(1) 0.354(1)
Df 1.250(2) 1.253(2) 1.273(1)
κ 2.034(6) 2.003(7) 2.181(4)
Df (1 + κ

8 ) 1.254(1) 1.250(1) 1.273(1)

Table 3.2: Copy of parameter estimates from [4]. Table inserted here to ease the comparison of
values.
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Figure 3.4: Scaling behaviour of 〈S〉 ∼ Lα (top) and 〈R2〉 ∼ Lγ (bottom) for all models studied.
Points represent mean values of 2× 103 instances with error bars showing the statistical errors
of the estimates.
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The reported values for γ are of the same precision as the values for ζ. They match up to the

2. decimal point for all models, although there is some discrepancy. This difference is attributed

to the strong finite size corrections of the system and that different statistical methods were

used in this report. The separation between lattice types is clear for the values of γ, although

not as clearly as for other parameters.

On the other hand, there is some disagreement between the values of α found here and in [4].

The estimates of α, which describes the scaling of the average length of the cycles as a function

of the system size tends to be larger on the second decimal point in all cases for the maximum

weight excitation. On one side, we expect the loops obtained by means of this excitation strategy

to be larger than the one obtained in [4]. The average cost of the loops 〈∆Eê〉 are also higher for

all models compared to [4] which confirms that the loops are indeed on average longer. However,

we cannot exclude that the exponent α is identical to the one obtained using a random edge

excitation, and more precise numerical estimates are needed to clarify this point. The precision

is however sufficient to observe the separation of values for the different lattice types in this case

too.

The fact we estimate a larger α with respect to [4] induces in turn a different, larger value

for the fractal dimension from the relationship Df = 2 − γ + α for all models. For example

for the max weight excitation Q model Df = 1.383 ± 0.036 while for the random excitation Q

model Df = 1.254± 0.002. As we mentioned above, we think that the discrepancy is caused by

the fact that reported values are affected by corrections due to the finite system sizes and larger

system sizes (L > 500) need to be simulated.

Using the relation ζ = 2−γ
Df

, the values calculated for ζ are in agreement with the mea-

sured values from the data to the second decimal point. This fact comforts the validity of the

underlying scaling relation between the parameters α, γ and ζ also in this case.

3.5 Winding angle variance

The estimated values for the scaling of the average cycle length 〈Sê〉 and gyration radius 〈R2
ê〉

indicate that the system is critical. Hence, the presence of a stronger form of symmetry is tested:

conformal invariance. Following the methodology in [4], the average winding angle variance 〈θ2〉
is calculated. As seen in [6, 24], if the ensemble of SLEκ curves is considered, 〈θ2〉 is directly

connected to the parameter κ through the following equation:

〈θ2〉 = a+
κ

4
lnL (3.25)

when θ is defined as the difference in angles between subsequent edges: θ(e + 1) = θ(e) +

angle(e, e+ 1) expressed in radians. For example for the square lattice the angle function takes

only three possible values {π2 ,−
π
2 , π}. If we restrict ourselves to curves winding around the torus

(so the longer ones), then
∑

e∈Sê θ(e) = 0 since Sê is a closed loop. The average variance of the

winding angle is

〈θ2〉 =
1

Sê

∑
e∈Sê

θ2(e). (3.26)
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In this case fitting a function of the form

〈θ2〉 = a+ κ′ lnL (3.27)

such that κ = 4κ′ is used to estimate the parameter κ, with a free parameter a. Furthermore,

the values for the known connection between SLEκ and the fractal dimension Df is reported in

Table 3.1.

Df = min
(

1 +
κ

8
, 2
)

(3.28)

Figure 3.5: Scaling relation of the variance of the winding angle θ of the cycles for all models.
Points represent averages of 2 × 103 instances with error bars showing the statistical errors of
the estimates.

In all cases, the estimated values for κ are in excellent agreement with values reported in

[4]. For all models, the estimates match to the 3. decimal point. Consequently, the fractal

dimension of the cycles Df = min(2, 1 + κ
8 ) corresponds well to the ones reported in [4].

3.6 Conclusions and perspectives

In this chapter, we tested the sensitivity of critical exponents reported in [4] to different excitation

strategies on three different lattices. Instead of the random link excitation, the maximum weight

excitation was applied, which forbids the edge with the largest weight: we expect that this

excitation causes a particularly large excitation of the ground state. The same properties of the

curves generated by overlaying the two solutions were explored as in [4].

We find that the average length of the curves 〈Sê〉 ∼ Lα, with L size of the system, after the

maximum weight excitation. We found a value of α slightly larger than the one found exciting

the system by cutting a randomly chosen edge in the solution. As expected, the average cost
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of the curves 〈∆Eê〉 is also larger. Consequently, the fractal dimension of the curves is larger

than the one obtained using a random strategy. We believe that this first approach overestimate

the fractal dimension of the curve and that the larger values of α are due to the presence of

large finite-size effects. This is supported by the fact that a different estimation strategy, related

to the scaling of the variance of the winding angles 〈θ2〉, gives instead values of the fractal

dimension fully compatible with [4]. To confirm this hypothesis, a more refined analysis (e.g.,

using the method of ratios) has to be performed on larger system sizes, that however requires

larger computational time.

Overall, the parameters show similar values for the maximum weight excitation as for the

random weight excitation. In particular, the values of κ calculated from the winding angle

variance 〈θ2〉, which has been used as a tool for a conformality test [24], confirm that the cycles

on bipartite graphs H and Q have dimension compatible with the one of the loop-erased self

avoiding random walk, which has Df = 5
4 and is SLE2. The T model, which is monopartite

exhibits excitation dimension in line with the one of 2d spin glass domain walls with Df = 1.271,

which is believed to be an SLEκ with κ ≈ 2.1.
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Chapter 4

Near-optimal configurations in

random dimer coverings

The stability of the ground state solution of the random dimer model is further investigated in

this chapter. The excitations on the random dimer model considered so far in Ch. 3 and in

[4] are local excitations: an edge is deleted which always results in some kind of rearrangement

(that we saw that it is long-ranged with finite probability). As a result, a link excitation is

not suitable to understand the stability of the lowest energy configuration. To understand the

energy landscape of the dimer model in close proximity to the lowest energy configuration, a

continuous excitation is needed (or, from a practical point of view, a discrete one with tunable

step sizes).

The aim of this chapter is to apply a smooth perturbation to the ground state solution of

the random dimer model. The perturbation is driven by a scalar ε such that weights on edges

that are in the ground state solution are penalised by ε. By varying the parameter ε it allows a

controlled near-continuous transition between the lowest energy configuration and excited states.

The method draws from [17] where the same kind of excitation was considered on a complete

graph, which in turn extends the ideas of [1].

In [1] various combinatorial optimisation problems defined on random domains, for example

the traveling salesman problem and the minimum spanning tree problem were considered. It

is conjectured that optimisation problems can be classified into a small number of universality

classes according to the ground state solution’s dependence on small excitations. To which

universality class a given problem belongs to is given by its relative difficulty of finding the

optimal solution. For example, the minimum spanning tree is considered an algorithmically easy

problem and thus near-optimal configurations scale differently than in the traveling salesman

problem (TSP) or the minimum-weight perfect matching, which are algorithmically harder.

In [17] this conjecture is investigated further for the minimum weight perfect matching on

a complete graph. Their numerical results are in agreement with [1] and hint towards the

underlying universality.

The aim of this chapter is to investigate this conjecture for the random dimer model by com-

puting the same scaling exponents. The random dimer model is a minimum weight matchings

on a lattice, hence if the conjecture holds we expect similar scaling behaviour of near-optimal

configurations as on complete graphs [17]. This is because if the proposed conjecture in [1] is

28



true, the determining force for the scaling behaviour is algorithmic complexity, in which case

the underlying graph structure is less important.

4.1 The ε-excitation

Let us consider again the same setup for the random dimer model on a weighted graph G(V,E) as

described in Sec. 3.1. The edge weights are drawn from an exponential distribution q(w) = e−w

and the ground state D∗ is defined as the dimer covering that minimises the sum of weights:

E[D∗] = minD E[D]. In this case, for a given set of edge weights we the perturbation of the

model is introduced by adding an additional ε weight to the edges found in the ground state

solution of the model e ∈ D∗. Introducing an indicator variable ne for edges in the ground state

solution, the new weights are given by

wεe = we + neε (4.1)

where ε is global parameter of the model. All edges in the ground state dimer covering e ∈ D∗

are penalized identically while edges that are not in the ground state solution e /∈ D∗ are not

penalized. Then, the algorithm for finding the maximum weight perfect matching is run again,

giving the ε-ground state or perturbed solution D∗ε . In this case, ε gives an additional degree

of freedom to the model and allows a smoother excitation than cutting a link instantly. As

ε is increased, the ground state will be penalised more heavily so that at a certain (instance

dependent) value ε∗ the former ground state is not optimal anymore.

The ε-ground state solution is characterized by the indicator variable nεe for edges that are

in the optimal configuration. We define the difference in the cost between the ground state D∗

and ε-ground state D∗ε is

∆Eε =
∑
e

(nεe − ne)we (4.2)

where the sum runs over all edges. Another quantity of interest is the distance between the

ε-ground state and the original ground state, which is defined as:

dε = 1− lε (4.3)

Here, the overlap lε̃ between the two coverings is given by:

lε =
1

N

∑
e

nεene. (4.4)

where the sum runs over all edges of the graph.

Various lattice types, i.e., honeycomb(H), square (Q) and triangular (T) (see Fig. 3.1)

and system sizes L = {20, 50, 100} are considered as well as the perturbation size is varied

ε ∈ [0.01, 0.9]1. For each setting, averages of 103 − 104 simulation instances are collected. To

find the ground state of the model, the blossom algorithm [16] is used, which finds the optimal

configuration with time complexity O(EV log V ). For an overview of the algorithm see Sec.

1The values ε are not uniform. Higher density towards 0.
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2.3.1. In [17] the mean-field version of the problem (i.e., G is assumed to be a complete graph)

is studied and the cavity method is used to find optimal configurations. As they showed, the

prediction from the cavity method perfectly coincides with the blossom algorithm results.

4.2 Scaling exponents

The ε-excitation is numerically studied with the aim to better understand the scaling behaviour

of near-optimal configurations. If we take the ground state solution of a realisation of the random

dimer model, we are interested in how far in distance the excited ground states are from it for

a given ε value. Furthermore, we are interested in how the normalised change in energy ∆Eε
N

scales as a function of the distance dε.

After [1] and [17], suppose the scaling relation for the distance as a function of the pertur-

bation:

d ∼ εβ (4.5)

in close proximity to the ground state solution. The exponent β describes the expected distance

for an excitation of size ε. Suppose also a power-law relation for average energy change as a

function of the distance to the ground state

〈∆Eε〉
N

∼ dτ . (4.6)

Observe, that the scaling exponents β and τ are not independent. From (4.2), we see that

∆Eε ∼ N
2 dε. This is because there are Nd/2 nonzero terms in the sum. The ε term comes from

the fact that we expect the new edge weights to be larger than the old weights by an amount

that is order of the perturbation ε. Thus the expected scaling is

∆Eε ∼ εβ+1 ∼ d
β+1
β ⇐⇒ τ =

β + 1

β
. (4.7)

To estimate β and τ we look at Fig. 4.1 and Fig. 4.2 respectively and fit a function of the

form to the data

f(x) = ω(1) + ωx (4.8)

where ω(1) is a constant and ω gives the slope. The values are reported in Table 4.1, with errors

in brackets.

We see that the numerical values of β are scattered around 0.5, which matches the estimates

found in [17]. Furthermore, the values of τ from the fit are spread around 3, which hint that the

models belongs to the same universality class. Plugging in the values of β to (4.7), which gives

H Q T

β 0.528(11) 0.535(15) 0.445(10)
τ 3.001(68) 2.721(44) 3.119(64)
1+β
β 2.893(39) 2.869 (52) 3.247 (50)

Table 4.1: Estimated values of scaling exponents β and τ for honeycomb (H), square (Q) and
triangular (T) models. The numbers in brackets indicate statistical errors.
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Figure 4.1: Scaling of distance d as a function of the perturbation size ε. Different system sizes
are indicated by different shapes: L = 20 circular, L = 50 inverse triangular and L = 100
triangular dot. Statistical errors are invisible.

Figure 4.2: Scaling of the normalised average energy difference with respect to distance d.
Different system sizes are indicated by different shades of the color: L = 20 light, L = 50
medium and L = 100 dark shade. The visible ”stairs” in the graph are due to discrete steps in
ε.
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an alternative way to compute τ we see that scaling exponent for the H model is 2.893± 0.033,

for the Q model is 2.869±0.045 and for the T model it is 3.247±0.030. Although the values of τ

and 1+β
β do not match identically, we believe they approach the same value for larger N . Finite

size corrections of the system are present in the models, which distorts the reported values.

Our estimates for the scaling exponents β and τ support the conjecture proposed in [1], where

the scaling of the travelling salesman problem was studied. They found that the energy of near-

optimal configurations scale ∆E ∼ d3±0.024 across dimensions d = 2, 3, 4 in both the Euclidean

matching problem and the Euclidean TSP. With Euclidean it is meant that the problem is

considered on a graph whose vertices are associated to random points in the Euclidean domain

and the weights are the Euclidean distances between the endpoints. Although the TSP is a

different problem, it is heuristically related to the minimum weight matchings. When all edges

are deleted that are in the ground state solution of the minimum weight matching, and then

the new optimal solution is overlayed with the ground state solution, we find a sub-optimal

solution of the traveling salesman problem. The above found scaling exponents hint that the

two problems belong to the same universality class as far as the value of β is concerned. Thus,

the conjecture proposed in [1] seems to hold for the random dimer model too.

4.3 Conclusion and perspectives

In this chapter we investigate the scaling of near-optimal configurations of the random dimer

model on three types of lattices in 2 dimensions. The conjecture put forward in [1] that com-

binatorial optimisation problems belong to a small number of universality classes based on a

solutions’ dependence on the ground state excitation is explored. Following the method in [17],

we generate near-optimal configurations by applying the ε-coupling method: the edges in the

ground state solution are uniformly penalized by adding an ε weight.

We measure two exponents that describe how the relationship between the ground state

solution and the ε-ground state: (i) β, which is the scaling exponent of the distance d as a function

of excitation size ε: d ∼ εβ and (ii) the τ , which describes how the average energy difference

scales as a function of the distance: 〈∆Eε〉/N ∼ dτ . An additional, non-trivial relationship is

tested between the exponents τ = (β + 1)/β.

The reported exponents are compared to the ones in [1] and [17], although not precise,

but agreement is found. Even though in [17] a complete graph is studied, we as well find

that β is scattered around 0.5 with a relatively large statistical errors, which hint towards the

universality of minimum weight matchings, regardless of the graph structure. Our estimates also

indicate the proposed cubic scaling of the energy difference τ , which is also confirmed in [17].

Hence, the computed exponents hint towards the universality of near-optimal configurations in

combinatorial optimisation problems.
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Self-assessment:

1. Scientific quality:

• The project is to a high scientific quality, accurate numerical methods are used and

we remained objective throughout the paper.

• Ideally the model should be simulated for larger system sizes with more instances,

however that was infeasible due to computational limitations.

2. Breadth:

• The project is intended to be self-contained. For example lot of extra research into

conformal invariance which was not covered on the course.

• Since the project touches many fields, e.g. combinatorics, probability theory, sta-

tistical mechanics, algorithms three month was not enough to dive deep into all of

them.

3. Originality:

• Original work in chapter 4 that connects the problem at hand to a conjecture from

20 years ago.

• Chapter 3 was largely based on a previous paper, however that was done on purpose.

4. Presentation and logical structure of the report

• The report is well written, one topic follows from the previous one. Figures and tables

are well designed with consistent colours throughout.

• Ch. 2 is might be hard to understand for inexperienced readers, as the word limit

forced dense text on complex mathematical topics.
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