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Abstract

In the present work we discuss some connections between Statistical physics and
optimization. In particular, we analyze some matching problems on regular weighted
graphs. We are interested in the random instances of the problems, where the
weights are independently and identically distributed according to a given law, and
the graphs are drawn from the ensemble of random regular graphs. The property of
such ensemble of being locally-tree-like in the thermodynamic limit suggests to use
the cavity method, whose predictions are compared with numerical simulations. We
study the asymptotic costs and the finite size corrections of the standard matching.
For valences z = 3, 4 the cavity estimates are in good-agreement with the numerical
simulations. In order to study the finite size corrections with the cavity method we
conjecture that such corrections receive a contribution due to the cost of the cycles
of the graph. For z = 3, 4 the cavity estimates of such costs are compatible with the
numerical simulation, performed with a Markov-Chain algorithm. Some observation
corroborate the presence of cycle-dependent terms in the finite size corrections. To
better investigate the role played by cycles we carry out some numerical simulations
about the fractional and the loopy fractional matching. These seems to suggest that
some properties of the fully connected topology still hold at finite connectivity.
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Introduction

Suppose for a moment to be the governor of N villages in the desert, and to be
responsible for building a water system: each village must be uniquely associated
with one of the N oases of the region. How can you perform this matching in
such a way that the total transport cost is minimum? The problem is simple in its
formulation, but quite difficult to solve, indeed there are N ! ways to match villages
and oases, and the problem is to select the cheapest one among them.

The Matching problem is a classical combinatorial optimization problem, of
which there are several different versions. The one of the villages in the desert is the
so-called assignment problem.

All the versions discussed in this thesis can be formulated in terms of graph
theory, and belong to the so-called P computational complexity class, i.e., roughly
speaking, can be solved in a time that scales as a polynomial in the number of nodes
of the graph. We study such problems in the presence of two sources of quenched
randomness: a link disorder, and a topological disorder. The first one means that
the weights associated with the edges of the graphs, i.e. the lengths of the roads
connecting villages to oases in the assignment case, are independent and identically
distributed random variables. The second one means that the graphs are drawn
according to the uniform distribution over the set of all regular graphs with a given
degree.

In the 80s it has been recognized that several optimization problem, including
the matching problem, can be turned into the statistical mechanics language by
simply calling the cost to be minimized energy, and the optimum solution the ground
state of the system. At the light of this analogy, we compare some predictions
obtained with the replica symmetric (RS) cavity method at zero temperature with
numerical simulations. The first quantity analyzed is the ground state energy in the
thermodynamic limit. The accordance between the predictions and the simulations
corroborates the correctness of the RS assumption. In a second moment the study
focuses on the 1/N-correction to the asymptotic cost at finite sizes of the system. In
this context the fundamental idea underlying the cavity approach is to conjecture
that this correction receives topological contributions due to the presence of cycles
in the graph, an then to try to reduce the calculation of the finite size corrections to
that of the average cost of the cycles of a given size. An algorithm, based on the
generation of Markov chains in the space of random regular graphs, is presented: it
allows to measure the cost of the cycles of a given length on a generic ensemble of
random graphs.

The work is divided in five chapters. In chapter 1 some definitions and concepts
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about graph theory, and optimization on graphs are presented. It is introduced the
idea of locally tree likeness, that is an important property of the graph ensemble on
which we want to focus. In chapter 2 some ideas about statistical mechanics, with
particular regard to the mean field approximations, are presented. In chapter 3 the
replica and the cavity method are introduced, and it is discussed the first example
of application of the cavity method. Chapter 4 deals with the relation between
statistical mechanics and the matching problems, focusing on some classical results
that turns to be useful in chapter 5. The last chapter is about matching on ran-
dom regular graphs, and addresses the studies summarized at the beginning of the
introduction.
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Chapter 1

Graphs and Optimization

1.1 Key definitions

1.1.1 What is a graph?

A graph G is an ordered pair G = (V ;E) comprising a set V of vertexes, or nodes,
together with a set E ⊂ V × V of edges. A subgraph of a graph G is a graph
G′ = (V ′;E′) such that V ′ ⊆ V and E′ ⊆ E. Each edge has either one or two
vertexes associated with it, called its endpoints. An edge is said to connect its
endpoints.

A graph is bipartite if V can be partitioned in two sets W and Z, called bipartite
parts of the graph, that satisfy:

V = W ∪ Z, (1.1)

and such that there is no edge joining vertexes in the same set. To denote a bipartite
graph one often writes G = (W,Z;E).

For a generic graph G = (V ;E) we will denote by i, j . . . the elements of V ,
and by (i, j) an edge whose endpoints are i and j. Edges of the form (i, i) are
called self-loops, or simply loops, while edges that connect the same pair of vertexes
are called multi-edges. A graph without self-loops and multi-edges is said simple.
In what follows when we write graph we will always mean simple graph, unless
otherwise specified, and we will refer to the general case as multigraph.

It is useful to define the neighborhood of a vertex i, denoted by ∂i, as the set of
vertexes that have an edge in common with i, ∂i ≡ {j ∈ V : (i, j) ∈ E}. Every node
i is characterized by the number of its neighbors, called degree or valence, that is
denoted by |∂i| or ki; a vertex with degree zero is called isolated, and a vertex with
degree one is called leaf. When the degree of every vertex is finite, we say that the
graph is locally finite.

We say that a graph is weighted if equipped with function w : E → R, that
associates with each edge e ∈ E a real number, that we call weight.

Given a graph G = (V ;E), the graph density of G is defined as:

DG = 2|E|
|V | (|V | − 1) . (1.2)

If DG ≈ 1, G is considered dense; otherwise if DG � 1, G is said sparse.



1.1 Key definitions 2

Cycles and matrix representation

Every graph G with N nodes can be represented by an N ×N symmetric matrix
M , called adjacency matrix, whose elements Mij are defined as follows:

Mij =
{

1 if there is an edge joining i to j,
0 otherwise.

(1.3)

Every feature of G, e.g. the number of cycles, is encoded in its adjacency matrix.
A walk of length ` on a graph G is a sequence of vertexes w = (v0, v1, ..., v`) with
(vm, vm+i) ∈ E. A walk is said to be simple if it is not self-intersecting. A cycle
of length ` is a simple walk of length ` that is closed, i.e. v0 = v`. Usually a walk
in which all vertexes and all edges are distinct is called path, then a cycle can be
defined equivalently as a closed path. Since cycles play an important role in the
finite size corrections to disorder systems defined on graphs, as we will be show in
chapter 3, it is worth discussing in details how their number in a given graph is
related with the adjacency matrix. The following proposition holds.

Proposition 1.1. Let M be the adjacency matrix of a graph G = (V ;E), |V | = N ,
and let ` be a positive integer. Then the entry in the (i, j)-position of the matrix M `

is the number of walks of length ` from the vertex i to the vertex j in G. It follows
that

Number of closed walks of length ` =
N∑
i=1

(
M `

)
ii
≡ Tr M `. (1.4)

A proof of Proposition 1.1 can be given by induction on the length ` [BBB93].
By imposing the walks to be non self-intersecting in Equation 1.4, it follows that
the number of cycles of length ` of a graph with adjacency matrix M is:

Number of cycles of length ` =
N∑
i=1

N∑
j=1
· · ·

N∑
n=1
K(i, j, ..., n)MijMjk · · ·Mni︸ ︷︷ ︸

` factors

, (1.5)

where:
K(i, j, ..., n) =

∏
p,q ∈
{i,...,n}

(1− δpq) . (1.6)

In Equation 1.6 the product is over all the pairs p, q belonging to the set of indices
{i, j, ..., n}, and δpq is the Kronecker delta. Two cycles of length ` are equivalent if
the respective vertex sequences (v1, ..., v`), and (v′1, ..., v′`) can be turned one into
the other by a transformation:

vi 7→ v′`+1−i, (1.7)

or by a cyclic permutation of the vi’s. Then if one is interested in the number of non
equivalent cycles of length `, has to divide Equation 1.5 by 2`, to take into account
that every cycle can be walked clockwise or counterclockwise, and that each of the `
nodes of the cycle can be equivalently chosen as the starting one.

Other important concepts whose definition is based on that of walk are distance
and connection. The distance between two nodes can be easily defined as the length
of the shortest walk joining them. A graph is said to be connected if for any two
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nodes is defined a distance. A special case is that of fully connected or complete
graph, where each node is equidistant from the others; usually a complete graph
with N nodes is denoted by KN .

A graph without cycles is said a forest; a connected forest is called tree.

1.1.2 Graph Ensembles

Graphs are useful tools for modeling a broad spectrum of problems arising, for
example, in the study of complex physical systems, combinatorial optimization,
social networks, the World Wide Web, and Internet [Mej10,Cal07]. One common
feature to most of such complex networks is that they are large, and then they
could be utterly impossible to handle [vdH16]. Nevertheless, the specific graph
under investigation is often a realization of an ample class of possible graphs: the
properties of the graph are therefore less informative of the typical ones of such a
class of possible graphs, to which the specific graphs belongs. For this reasons, we
introduce the concept of random graph ensemble.

A random graph ensemble G = (G,P) is a set G of graphs together with a
probability law P defined over it [BFK+01]. In what follows, when we write that
a graph G belongs to an ensemble G = (G,P) it is understood, with an abuse of
language, that G is the outcome of an extraction over G with a probability law P.
Given a graph ensemble, one can compute the average value of a generic observable
A[G]:

E[A] ≡
∑
G∈G

P[G]A[G]. (1.8)

We shall now introduce some random graph ensembles commonly used in statistical
physics as well as in other disciplines [New18].

The Erdős-Rényi ensemble, GER(N, p), which arises by taking N vertices, and
placing an edge between any distinct pair of them with some fixed probability p, is
the first random graph ensemble that has been studied. Denoting by M the number
of edges of a graph G, the probability of extracting G from GER(N, p), is given by:

P[G] = pM (1− p)(
N
2 )−M . (1.9)

Furthermore the degree of a node i is a binomial random variable that can be written
as:

P[|∂i| = k] =
(
N − 1
k

)
pk(1− p)N−1−k, (1.10)

because N − 1 nodes can be connected to i. Since the average number of neighbors
scales as Np, in order to maintain a finite connectivity in the large N limit, p have
to scale as 1

N . By setting Np = c, with c positive real number, we have that:

lim
N→∞

P[|∂i| = k] = ck

k! e
−ck, (1.11)

and then |∂i| becomes a Poisson random variable.
Another example is the ensemble of random regular graphs GRRG(N, z). The

measure of this ensemble is uniform over all the graphs with N vertexes with the
same number z of neighbors. It is important to note that in order GRRG(N, z) to be
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Figure 1.1. The stubs are lettered to identify them. The matching on the left is different
from that on the right.

different from the empty set, Nz must be an even number, indeed for every graph it
is immediate to see that:

N∑
i=1

ki = 2|E|. (1.12)

An uniform sampling of GRRG(N, z) can be obtained starting from the so-called
configurational model [Wor99] as follows. Let us consider N vertexes, and suppose
to draw z lines, usually called “stubs” or half-edges, emanating from each, as it is
shown below for z = 3:

1 2 3

...
N

Let us callW the set of all the stubs. At this point, we pair the half-edges at random,
i.e., we choose uniformly at random what is called a matching of the elements of
W . The result of this procedure is a configuration. Each configuration corresponds
to a multigraph belonging to a new ensemble G∗RRG(N, z) = (G∗RRG,P∗RRG), that is
defined on the set of all regular multigraphs with N nodes with degree z: G∗RRG
contains elements that are not simple, i.e., that may have self-loops and multi-edges.
It is important to note that while all matchings of stubs appear with equal probability
in the model, in general it is not guaranteed that all multigraph topologies appear
with equal probability, because more than one matching can correspond to the same
topology: for example, in Figure 1.1 both the left and the right pairings, that are
different matchings of W , produce a triangle.

If a configuration does not contain self-loops and multi-edges, i.e. if it constitutes
a simple graph, one can generate all the matchings that correspond to it by taking
anyone matching for that graph and permuting the half-edges at each vertex in every
possible way. Then the number of matchings |M(G)| corresponding to each simple
graph G is (z!)N . It can be easily proved that the configurational model provides a
non uniform sampling of the set of all regular multigraphs [New18]. However if G is
a graph, as seen above, |M(G)| does not depend upon G, and then each graph can
occur with the same probability. Therefore repeating the pairing procedure until
the resulting graph has no self-loops and multi-edges gives a uniform sample of the
random regular graph ensemble GRRG. It turns out that the probability to extract
a regular graph G from G∗RRG(N, z) has the form [Ell11]:

P[G ∈ GRRG(N, z)]→ e−
(z2−1)

4 as N →∞. (1.13)

Then this sampling procedure of GRRG quickly slows down with increasing z. In the
next section a faster method is discussed for higher values of z, that allows us to
construct a uniform sampling of the ensemble of regular graphs.
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The configurational model can be easily generalized to the case of a generic
degree sequence {ki}Ni=1, where ki is the degree of the i-th node and, as before,∑N
i=1 ki is even. In this more general context a new ensemble, G∗Conf(N, {ki}Ni=1), is

defined over the set G∗Conf of all multigraphs with the given degree sequence through
the pairing procedure discussed in the regular case. Moreover by a straightforward
generalization of the method discussed to sample regular graphs, also in this case it
is possible to construct a uniform sampling of the set of simple graphs with degrees
{ki}Ni=1.

A useful property that characterizes graphs with a given degree sequence, and
underlies some numerical simulations discussed in chapter 5, is given by the Havel-
Hakimi theorem. Firstly it is useful to define graphical sequences: a sequence {ki}Ni=1
of non-negative integers is called graphical if it is a degree sequence of some graph.

Theorem 1.1 (Havel-Hakimi). Let K be the sequence k1, k2, ..., kN , with N ≥ 2
and k1 ≥ k2 ≥ ... ≥ kN . Let K ′ be the sequence obtained from K by discarding k1,
and subtracting 1 from each of the next k1 entries of K, i.e. K ′ is:

k2 − 1, k3 − 1, ..., kk1+1 − 1, kk1+2, ..., kN (1.14)

then K is graphical if and only if K ′ is graphical.

Thanks to Theorem 1.1 one can easily construct a graph from a given sequence
of integers, if it is graphic, following the steps of Algorithm 1.

Algorithm 1 Havel Hakimi (degree sequence {k1, ..., kN})
S ← {ki}Ni=1;
while ∃ ksi ∈ S, ksi 6= 0 do

reorder S into non increasing order;
if ks1 > |S| − 1 then return the sequence is not graphic;
end if
for all i, 2 ≤ i ≤ ks1 + 1 do

ksi ← ksi − 1;
connect the node s1 to the node si;

end for
remove ks1 from S;

end while

Fast generation of random graphs

From Equation 1.13 it is clear that, if one is interested in generating uniformly a large
number of regular graphs with high degree, the procedure discussed in the previous
section may be inefficient. In this section we briefly discuss an heuristic algorithm
that, at least empirically, has turned out to be the most efficient one [MZ03,MKI+03].

More specifically the problem we want to address is the following: given a degree
sequence that is graphical, we want to generate uniformly at random a simple
connected graph having exactly this degree sequence; we are specifically interested



1.1 Key definitions 6

j

i

k

l

j

i

k

l

Figure 1.2. Example of edge swapping: the edges in the graph on the left are exchanged
in such a way to create the graph on the right.

in the case of connected graphs. The generation process proposed by the Markov
chain Monte-Carlo algorithm is composed of two main steps:

1. Realize the given sequence: generate a single simple connected graph that
matches the degree sequence,

2. Shuffle the edges to make it random, while keeping it connected and simple.

The first step can be achieved in several different ways. The simplest one consists
in generating G0 by using the configurational model, discussed in the previous
section. In this case one has to repeat the pairing procedure until a connected
graph with the prescribed degree sequence is found. A different approach is to
generate the first graph by using the Havel-Hakimi theorem (Algorithm 1): in linear
time Havel-Hakimi generates a graph G′ with the given degree sequence. If G′ is
connected then we can set G0 = G′, otherwise one can, for example, make random
edge swappings on G′ until the resulting graph is not connected.

Let us now discuss the second step. Consider the following Markov Chain.
Suppose to have a connected graph Gt that realizes the given degree sequence. The
graph Gt+1 is determined by a swapping procedure: we pick two edges at random,
and then we swap them as shown in Figure 1.2, obtaining another graph G′ with
the same degrees. If G′ is simple and connected, we consider the swap as valid:
Gt+1 = G′. Otherwise, we reject the swap: Gt+1 = Gt. It is worth noting that this
procedure preserves the degree of each node and therefore the degree sequence.

The set of states of this Markov chain is the space S of all simple connected
graphs with the given degree sequence, and the initial state G0 is the graph obtained
by the first step. It is immediate to see that the transition Gt → Gt+1 has probability

1
|E|(|E|−1) , with |E| number of edges, if there exists an edge swap that transforms Gt
in Gt+1. If there are no such swap, the transition has probability 0.

Theorem 1.2. This Markov chain is irreducible [Tay81], symmetric and aperiodic
[MZ03].

A consequence of Theorem 1.2 is that the Markov chain converges to the uniform
distribution on S, i.e., the set of all graphs having the desired properties. It is possible
to define on S a notion of distance between two graph as the number of swappings
required to turn one graph into the other. In [Wil99] it has been proved that the
diameter of S, i.e. the distance between the two farthest graphs, is equal to |E|.
An empirical result is that this Markov chain converges after O(|E|) swaps [VL05],
however no precise formal results are known up to now. It is important to note
that in order to do O(|E|) swaps one may have to process much more transitions.
However it can be proved that the probability that a random edge swap is valid is
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at least ρ
2z(z+1) , where z is the average degree, and ρ is the fraction of all possible

pairs of vertices which have distance greater than or equal to 3. As ρ tends to grow
with the size of the graph in most cases of interest, one may expect that the number
of transitions requested to converge is also O(|E|).

Local weak convergence

One of the most important and useful properties of some sparse random graph
ensembles for analytical investigations is the locally tree-likeness. In these ensembles,
in a sense that is hinted in this section, almost any finite neighborhood of a node
looks like a random tree in the large graph limit. Firstly it’s necessary to introduce
some definitions.

A rooted graph is a graph together with the specification of a particular vertex
o, called the root. An isomorphism from a rooted graph (G, o) to a rooted graph
(G′, o′) is a bijection γ : V → V ′ that preserves:

• the root: γ(o) = o′ ,

• the edges: (i, j) ∈ E ⇐⇒ (γ(i), γ(j)) ∈ E′.

When such a γ exists we say that (G, o) is isomorphic to (G′, o′), and we write
(G, o) ≡ (G′, o′). We let G? denote the set of connected rooted graphs that are locally
finite, i.e., each node has a finite number of neighbors. Given (G, o) ∈ G? and d ∈ N,
we let [G, o]d denote the rooted subgraph obtained from (G, o) by keeping only those
vertexes whose distance from o is at most d, and all the edges between them. In G?,
a sequence {(Gn, on) : n ∈ N} is said to converge locally to (G, o) if for every radius
d ∈ N, there exists nd ∈ N such that:

n ≥ nd =⇒ [Gn, on]d ≡ [G, o]d. (1.15)

The idea one wants to capture with this definition is that for large n, Gn looks
very much like G in an arbitrarily large neighborhood of the root of G. What one
observes is that the space G? can be endowed with a function dG? that associates to
each two rooted graphs belonging to it a distance [vdH16]:

dG?
(
(G, o), (G′, o′)

)
= 1
R? + 1 , where R? = sup

{
r : [G, o]r ≡ [G′, o′]r

}
, (1.16)

which metrizes the notion of convergence of Equation 1.15. This fact turns G? into a
complete separable metric space [Sal11], and then the theory of the weak convergence
of probability measures [Sag13] can be used.

Definition 1.3 (Local weak convergence of random graphs). Let Gn be a ran-
dom graph obtained from the ensemble G? = (G?,P?) and let (G, o) be a random
rooted graph obtained from the same ensemble. Then we say that Gn converges in
distribution in the local weak sense to (G, o) when:

En [A(Gn, on)] n→∞−−−→ E [A(G, o)] , (1.17)

where the expectation on the right-hand side of Equation 1.17 is w.r.t. (G, o), for
every observable A : G? → R, while the expectation En is w.r.t. the random vertex
on, and the random graph Gn [AS04,vdH16].
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Although analogous considerations can be made for different ensembles of sparse
graphs, in the following we focus on the RRG one, that underlies all the models
studied in this thesis. In the thermodynamic limit N → ∞, graphs belonging to
the random z-regular graph ensemble admit as local weak limit the infinite tree of
valence z. This behavior here is a direct consequence of the fact that short cycles
are asymptotically rare in random z-regular graphs, i.e., cycles have a vanishing
density in the large graph limit, as it is discussed in the next section.

Cycles

The number of short cycles of given length in random regular graphs are random
variables that become independent in the large graph limit. Given a set of random
variables Zi, i ∈ I ⊂ N with I finite, they are asymptotically independent Poisson
random variables with means λi if their joint probability distribution tends to that
of independent Poisson random variables whose means are fixed numbers λi. In
formulas:

P

∧
`∈I
{Z` = r`}

 N→∞−−−−→
∏
`∈I

e−λ`
λr``
r`!

, (1.18)

for every fixed set of non-negative integers r`.
Let us now suppose that Z(N)

` , with ` ≥ 3, is the random variable that represents
the number of cycles of length ` in a random z-regular graph with N nodes. For fixed
n ≥ 3, it is proved [Bol80,Wor80,Wor81] that Z(N)

` , 3 ≤ ` ≤ N , are asymptotically
independent Poisson random variables with means:

λ` = (z − 1)`

2` , (1.19)

then the average density of cycles of a given length asymptotically vanishes, and this
is at the basis of the locally tree-like structure of the ensemble. Equation 1.19 can
be argued by looking at the configurational model. The number a` of `-cycles is in
one to one correspondence with the number of sets of ` edges {e1, ..., e`}, such that
there exists a sequence of ` distinct vertexes (v1, ..., v`) with ei connecting an end
emanating from vi to an end emanating from vi+1, with addition modulo `. Each
set of such edges can be obtained from 2` different sequences of edges. The total
number of this kind of sequences can be found by counting all the ways they can be
realized by the connection of stubs:

a` = z`(z − 1)` N !
(N − `)! ≈

z`(z − 1)`

2` N `. (1.20)

For any set S of ` pairwise disjoint edges, the probability that they all appear in
a random matching is given by the ratio between the number of matchings that
contain S and the total number of matchings:

(zN − 2`)!!
(zN − 1)!! = 1

(zN − 1)(zN − 3) · · · (zN − 2`+ 1) ≈
1

(zN)` , (1.21)

and then Equation 1.19 is recovered.
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1.2 Optimization problems and graphs
There exist many problems that can be expressed in the graph language, and
whose great practical and intrinsic interest motivates the development of efficient
algorithms [KV18]. The attempt of most of these algorithms is to optimize, that
is maximize or minimize, some quantity [Cla07]. In this section some definitions
and examples about optimization theory are introduced. As the study of matching
problems is the main subject of this thesis, a particular attention is payed to these.

An instance, or input, of an optimization problem is a pair (F ,C ), where F is
the set of feasible solutions, and C , called cost function, is a mapping:

C : F 7−→ R. (1.22)

The problem is to find (if exists) an element f ∈ F for which:

C (f) ≤ C (g) ∀g ∈ F . (1.23)

Such element f is called a globally optimal solution to the given instance. An
optimization problem is a set I of instances. Problems in which F is a countable
set, possibly infinite, are called combinatorial optimization problems. To be concrete
it is useful to discuss some classical examples.

The traveling salesman problem (TSP)

In an instance of the TSP we are given a complete graph on N vertexes KN , and
the distances between every pair of N nodes in the form of an N ×N symmetric
matrix D, with Dij ∈ R+. Let us define a tour as a closed path that visits every
city exactly once. We can take:

F = {all permutations π of N objects}. (1.24)

Denoting by N + 1 = 1, the cost function is the map:

C : π 7−→
N∑
j=1

Dπ(j)π(j+1). (1.25)

A similar formulation of the problem can be given on a generic connected graph
G. It is worth noting that in the complete case the number of possible solutions of
the problem |F | is given by N !

2N = (N−1)!
2 , therefore trying to solve an instance by a

brute force approach, i.e. listing all possible solutions and then selecting the optimal
one, would require a rapidly increasing time with the instance size.

Minimum spanning tree

A spanning tree T = (V,E′) of a graph G = (V ;E) is a subgraph that contains all
the vertexes of G, and is a tree. Let us associate, as above, to each edge (i, j) of G
a weight wij ∈ R+. The problem is to find a spanning tree of G, T = (V,E′), that
has minimal total length of its edges. In this case we have:

F = {all spanning trees of G}
C : T = (V,E′) ∈ F 7−→

∑
(i,j)∈E′

wij . (1.26)
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Figure 1.3. A map divided into regions can be seen as a graph in which each node is
a region and each edge is a border. The four color theorem states that, given any
separation of a plane into contiguous regions, no more than four colors are required to
color the regions of the map so that no two adjacent regions have the same color [AH89].

The graph q-coloring problem (q-Col)

Suppose to have a palette of q colors identified by an integer c ∈ 1, ..., q. Given a
graph G = (V ;E) the problem is to assign to each vertex v ∈ V a color cv in such a
way that the cost function

C [{ci}i∈V ] =
∑

(i,j)∈E
δcicj (1.27)

is minimized. With this definition the best possible coloring, if it exists, is that of
zero cost, in which all adjacent vertexes have different colors, as in Figure 1.3.

Satisfiability (SAT)

Let us consider a bipartite graph G = (V ;E). Therefore there exist two sets W , Z,
with |W | = M and |Z| = N , such that V = W ∪ Z and if (a, i) ∈ E then a ∈ W ,
i ∈ Z. In the following, we index with a, b, . . . the elements of W and with i, j, . . .
the elements of Z. Suppose now that to each node of G is associated with a binary
variable, that is indicated with ya ∈ {−1, 1} for the nodes belonging to W and with
xi ∈ {−1, 1} for the others, and that the relations

ya =
∏
i∈∂a

1− J(i,a)xi

2 ∀a ∈W, (1.28)

hold, where the J(i,a)’s are constants belonging to {−1, 1}, fixed with the instance
of the problem and associated to the edges of the graph. The Satisfiability problem
consists in finding the configuration {xi}Ni=1 ∈ {−1, 1}N , such that:

C = M −
M∑
a=1

ya (1.29)

is minimized. It is worth noting that the domain of feasible solutions, F = {−1, 1}N ,
is exponential in the size of Z, |F | = 2N .
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1.2.1 Matching problems

A matching M of a graph G = (V ;E) is a subset of the edge set with the property
that no two edges ofM share the same node. A matchingM of G is said maximum
if, given another matching M′, |M′| ≤ |M|. By definition a matching can never
have more than |V |/2 edges. If V is even and the cardinality of a matching is exactly
|V |/2 the matching is said perfect. Suppose that each edge e of G is associated
with a weight we ∈ R+. The minimum matching problem consists, given a graph
G = (V ;E), in finding the perfect matchingM such that:

C [M] ≡
∑
e∈M

we =
∑
e∈E

mewe (1.30)

is minimum. In Equation 1.30 me : E → {0, 1} is an application that associates 1
with edges belonging toM and 0 with other edges. Then for the minimum matching
problem F is the set of all possible perfect matchings of G, i.e., the set of all possible
sequences {me}e∈E that satisfy:∑

k∈∂i
m(k,i) = 1 ∀i ∈ V. (1.31)

If we take we = 1 ∀e, enlarge F to the set of all matchings, and take:

C [M] = −
∑
e∈M

we, (1.32)

the problem quite often is called simply matching problem, or maximum cardinality
matching problem, that is the problem of finding a maximum cardinality matching
M on a given graph G [PS98]. In what follows, unless otherwise specified, we will
denote by matching problem, or standard matching problem, the minimum weight
perfect matching problem on a generic graph.

If, instead of a generic graph, it a bipartite graph G = (W,Z;E) is considered,
with |W | = |Z| = N , the minimum matching problem is known as the Assignment
problem. Furthermore if G is complete, it is worth noting that the matching can be
represented by a permutation of N objects, and therefore there exist N ! different
assignments.

Properties of matchings

In this section some important properties of matchings on graphs are discussed. A
complete and wide discussion can be found in [LP09].

The Tutte’s theorem characterizes graphs in which a perfect matching is possible:

Theorem 1.4 (Tutte). A graph, G = (V ;E), has a perfect matching if and only if
for every subset U of V , the subgraph induced by V \ U , i.e., obtained by removing
the vertexes of U from G, has at most |U | connected components with an odd number
of vertexes [LP09].

A necessary condition for the existence of a perfect matching is that the number of
vertexes is even; however, because of Theorem 1.4, this condition is not sufficient, as
it is shown in Figure 1.4. Hall’s marriage theorem provides an intuitive formulation
of Theorem 1.4 for bipartite graphs:



1.2 Optimization problems and graphs 12

r

I1

I3

I2

r

I1

I3

I2

Figure 1.4. Suppose that a perfect matching exists for the graph on the left. Then the root
node r has to be matched to one of its three neighbors, e.g. that on the right. However
by this procedure I1 and I2 are left with an odd number of vertexes, then a perfect
matching cannot exist.

Theorem 1.5 (Hall’s marriage). Let G be a bipartite graph with parts W and Z.
For a set X of vertexes in W , let ∂X denote the neighborhood of X in G, i.e. the
set of all vertexes in Z adjacent to some element of X. Then there is a matching
that entirely covers W if and only if for every subset X of W :

|X| ≤ |∂X|. (1.33)

If the graph is a tree, an interesting property holds on the number of possible
matchings:

Proposition 1.2. Every tree T = (V ;E) has at most one perfect matching.

Proposition 1.2 can be easily proved by induction on the number of vertexes of
the tree.

At this point let us discuss a strategy that usually is adopted to solve the
maximum cardinality matching. A first important important definition is the
following:

Definition 1.6 (Alternating and augmenting paths). Let G = (V ;E) be a graph
andM be a matching in G. Then a path v1, ..., vk is said to be alternating respect
to M if successive edges of the path alternately belong to M and E \ M. An
alternating path is said to be an augmenting path if the first and the last vertexes in
it are unmatched.

An important characterization of maximum matching is given by the following
result:

Theorem 1.7 (Berge’s Theorem). If G = (V ;E) is a graph andM a matching in
G, thenM is a maximum matching if and only if G has no augmenting paths with
respect toM.

Given an augmenting path P with respect to a matchingM, it is possible to
improve M by inverting the edges along the path: matched edges are changed
to unmatched ones and vice versa. By doing so, the cardinality of the matching
is increased by 1, as shown in Figure 1.5. All known algorithms for maximum
matchings are based on the idea to take a starting matching, e.g. the empty one,
and repeatedly discover augmenting paths until a maximum matching is found.
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Figure 1.5. The path on the left is an example of augmenting path. The colored edges
belong to the matching. If the path is reversed, as shown in the figure on the right, the
cardinality of the matching is increased by 1.

The Hungarian algorithm

In this section we would like to sketch some ideas underling a classical combinatorial
optimization algorithm, the Hungarian algorithm [Kuh05], that, in its original
formulation, solves the assignment problem in time O

(
N4). All discussed matching

problems belong to the so-called P complexity class, i.e., to the class of optimization
problems for which deterministic algorithms running in polynomial time respect to
the input size are available [LP09,CLRS09].

The Hungarian algorithm is based on two fundamental considerations. The first
one is that by choosing two vectors θ, λ ∈ RN the optimal solution is left unchanged
under the following gauge transformation:

wi,j 7−→ wij − θi − λj ,∑
i,j

wijmij 7−→
∑
i,j

wijmij −
∑
i

θi −
∑
j

λ. (1.34)

Indeed from Equation 1.34 it follows that the total cost of any feasible solution will
change of the same quantity −

∑
i θi −

∑
i λi, an therefore an optimal assignment

will remain optimal. A gauge transformation (θ, λ) is said proper if it preserves the
positive sign of the weights.

The second important consideration is the following. Firstly let us observe that,
thanks to the first consideration, all the weights can be taken non negative without
loss of generality; let us consider the set S of all edges with zero weight, if any.
Let us denote by G′ = (V ;S) the graph whose nodes are that of G, and whose
edge set is S. Thanks to the first consideration once again, if a perfect matching
in G′ = (V ;S) exists, it follows that such matching is the optimal solution for the
assignment problem on G. The idea of the Hungarian algorithm is to manipulate the
weights wij through suitable proper gauge transformations of W = (wij)ij , in order
to make more and more zeros appear, until G′ = (V ;S) has a perfect matching. It
is worth noting that, since in G′ all the edges have the same weight, in that case
the problem reduces to a maximum cardinality one. At the end the value of the
optimal solution will be given by the sum of the original weights associated with the
edges belonging to the perfect matching. The existence of such a gauge that allows
to reduce the assignment problem to an unweighted matching problem on bipartite
graph is guaranteed by the following result:
Theorem 1.8 (König-Egerváry). There exists a proper gauge (θ?, λ?) such that the
cost of the optimal assignmentM? is given by:

C [M?] =
∑
i

θ?i +
∑
i

λ?i . (1.35)
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Chapter 2

Equilibrium Statistical
Mechanics

2.1 Some important ideas
The main aim of statistical mechanics grounds on the attempt to derive the
thermodynamic properties of macroscopic bodies starting from the fundamental
laws that describe their microscopic components [Hua09, LL68]. For a classical
Hamiltonian system with 2N degrees of freedom, given an initial configuration
(q, p) = (q1...qN , p1...pN ), the set of generalized positions qi(t) and generalized mo-
menta pi(t) can be found in principle by solving the Cauchy problem for the Hamilton
equations [LL60]: 

dqi
dt

= ∂H
∂pi

,
dpi
dt

= −∂H
∂qi

qi(0) = qi, pi(0) = pi,

∀ i = 1, ..., N (2.1)

where H is the Hamiltonian of the system. As for a macroscopic object the order
of magnitude of N is typically ≈ 1023, any attempt to derive the thermodynamic
properties by solving Equation 2.1 would be vain. It is worth emphasizing that,
even if a general solution of the equations of motion were known, it would be quite
impossible to impose the initial conditions, because the time required by the best
computer ever built would be larger than the recorded human history. The only
way to face the problem is to follow a probabilistic approach. Given an arbitrary
observable O(q, p), the fundamental hypothesis of equilibrium statistical mechanics
is that, under suitable conditions [Par88], the time average O:

O = lim
t→+∞

1
t

∫ t

0
dτ O

(
q(τ), p(τ)

)
is equal to 1

Z

∫
dqdp O(q, p) e−βH(q,p), (2.2)

where:
ψ(q, p) = e−βH(q,p)

Z
(2.3)

is the canonical distribution, Z is known as partition function and, by using scales
in which temperature and energy have the same units, β = T−1 is the inverse of the
absolute temperature. It is well known that the partition function plays a central
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role in the computation of many physical quantities of interest; the reader is referred
to [Mus10] for a wide-ranging discussion of many examples.

An interesting and useful property of the distribution of Equation 2.3 is that it
can be derived from a variational principle; in particular it minimizes the so-called
free energy functional F [P ]:

F [P ] = E[P ]− S[P ]
β

, (2.4)

E[P ] =
∫
dqdp P (q, p)H(q, p), S[P ] = −

∫
dqdp P (q, p) logP (q, p),

subject to the positivity and the normalization constraints, i.e., P (q, p) ≥ 0, and∫
dqdp P (q, p) = 1. In Equation 2.4 S[P ] is the entropy of P [Gne17], and E[P ],

when P is equal to the canonical distribution, is the average energy of the system
described by the Hamiltonian H(q, p).

The variational principle can be easily checked when the set of all possible config-
urations is countable, that could happen in a system obtained as an approximation
of a Hamiltonian one, by dividing its phase space into cells. In this case all the
configurations are identified by an index k, and Equation 2.3, Z and Equation 2.4
become respectively:

ψk = e−βHk

Z
, Z =

∑
k

e−βHk , F [P ] =
∑
k

PkHk + 1
β

∑
k

Pk logPk. (2.5)

The constrained minimum of Equation 2.4 can be reduced to the problem of finding
the minimum of the Lagrangian:

L = F [P ] + λ

(∑
k

Pk − 1
)
, (2.6)

where the Lagrangian multiplier λ has to be chosen in such a way that the minimum
of L satisfies

∑
k Pk = 1. The extremality condition implies:

∂L
∂Pk

= 0⇒ Hk + 1
β

+ λ+ 1
β

logPk = 0 ∀k, (2.7)

and, by using λ for the normalization, it follows:

Pk = ψk = e−βHk

Z
, Z =

∑
k

ψke
−βHk , (2.8)

that is the minimum, being the second derivative ∂2L
∂P 2

k
greater than zero:

∂2L
∂P 2

k

= 1
βPk

> 0 ∀ k. (2.9)

The formulation in terms of a variational principle, as will be introduced in section 2.4,
is the starting point for the discussion of many approximate methods.
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2.2 Ferromagnetic systems: the Ising model
An important success of statistical mechanics is represented by its application to
the study of phase transitions on magnetic systems [Wol00]. For it seems that the
essential features of cooperative phenomena do not depend on the details of the
interaction of electrons with nuclei, or between molecules, often modelings of the
true system are used [Nis05,Bru67]. The standard procedure consists in trying to
construct the simplest model that still preserves the interesting physical properties
of the system, by picking from all the degrees of freedom just a small set of variables.
Such a model usually depends on a few parameters that can be fitted experimentally
to reproduce the right physics.

In many magnetic materials the electrons responsible for their magnetic behavior
are localized near the atoms of a lattice, and the force, which tends to orient
the spins, is the exchange interaction, whose range is comparable with the lattice
spacing [Par88]. One of the most popular and prototypical models that describe
this situation is the Ising model. We consider a periodic lattice with N sites, in
dimension d. To each site i one attaches a “spin” xi that can take only two values,
xi ∈ {−1, 1}, and represents the magnetization produced by the site; therefore there
are 2N configurations, each one defined by a vector of the form C = (x1, ..., xN ). Let
us assume that only pairs of neighbouring spins interact, and that the energy of a
configuration C is:

H (C) = −J
∑
(i,k)

xixj −
∑
i

hixi, (2.10)

where the sum over i and k runs over all possible nearest neighbours of the lattice,
and the second term takes into account the presence of a site-dependent external
magnetic field hi. The coupling constant J rules the strenght of the interaction
between spins. Moreover if J > 0 the energy is lower for parallel spins, and the
system is said to be ferromagnetic; if J < 0 the system is antiferromagnetic, and
nearby spins tends to be antiparallel.

An exact solution of the model [Bré10,Mus10], the exact calculation of the free
energy (Equation 2.4) and of the correlation function between variables 〈xixj〉,

〈xixj〉 = 1
Z
∑
C
xixje

−βH(C), (2.11)

is available only in one dimension, or in two dimensions at zero magnetic field: the
other cases require an approximate approach. Of all different methods, the class of
mean fields approximations (MFA) [Kad09], that will be introduced in section 2.4,
play an important role due to the wideness of its applicability range, expanded to
all the systems that can be studied with the formalism of equilibrium statistical
mechanics.

In the following, we focus on systems with a countable set of possible states.
Often in the study of such kind of models, statistical mechanics meets graph theory,
whereas the lattices over which the systems are defined can be considered as graphs
and graph theory language can be useful. For this reason, before discussing the
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MFA, in section 2.3 the factor graph formalism is introduced, a useful tool for the
study of models defined on generic graphs that allows to represent graphically the
probability distribution associated to the model.

Spontaneous magnetization

For dimension d ≥ 2, ferromagnetic systems like the ferromagnetic Ising model have
spontaneous magnetization for hi = 0 below a critical temperature, called Curie
temperature. Such a behavior is associated to a probability measure in the space of
configurations that is not invariant under the symmetry group of the Hamiltonian
of the system at zero external field. At first sight spontaneous symmetry breaking
seems to be in conflict with Equation 2.3: if H is invariant, ψ must also be invariant.
This argument, although correct at finite volume, fails for an infinite system in
which Equation 2.3 is only formal and the spontaneous symmetry breaking occurs
because of the appearance of real zeros in the partition function, and therefore of
non-analyticities in the free energy density, a fact that can only take place in the
termodynamical limit. The presence of such non-analytic behavior is related to
the presence of more than one equilibrium state (in the case of ferromagnets, two
equilibrium states corresponding to the two different magnetizations). According
to the Ehrenfest classification, if the free energy is differentiable (k − 1) times, but
not k times, the singularity point is called a transition of order k: it is common in
the community to use the terminology “second order transition” for any transition
of order k ≥ 2. The description of second order transition through the theory
of criticality and critical exponents it is one of the major successes of statistical
mechanics. The reader is referred to [Par88,Bré10] for a complete discussion about
this topic.

2.3 Factor graphs
Abstracting from the Ising example, assume the configuration of a magnetic-like
system to be determined by a set of N variables x = (x1, ..., xN ), taking values in a
finite alphabet X , xi ∈ X ∀i. Suppose the canonical distribution ψ(x) of the system
can be factorized as:

ψ(x) = 1
Z

M∏
a=1

ψa(x∂a), (2.12)

where x∂a ≡ {xi|i ∈ ∂a}, and ∂a is a set of indices belonging to the set [N ] of
all possible subsets of integer i such that 1 ≤ i ≤ N ; the ψa(x∂a)’s moreover are
real non negative function such that ∀S ⊆ ∂a it is impossible to find two real non
negative functions f , g that satisfy:

ψa(xa) = f(xS)g(xS̄), (2.13)

where S is the complementary of S, i.e. S ∪ S = ∂a. In the Ising case for example,
the fact that only neighboring variables interact allows to factorize the distribution
as:

ψ(x) = 1
Z

N∏
i=1

eβhixi
∏
〈k,l〉

eβJxkxl , (2.14)
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Figure 2.1. Representation of the factor graph associated with an Ising model defined on
a square bidimensional lattice.

where we stressed the fact that i and j are neighbours using the notation 〈i, j〉,
and every factor eβhixi and eβJxixj corresponds to a single interaction: the former
between the external magnetic field hi and xi, and the latter between xi and xj . It
is possible to provide a graphical representation of a joint probability distribution
like (2.14), by associating with it a so-called factor graph. The factor graph of a
generic distribution of the form (2.12) is a graph Fψ that contains two types of
nodes: N variable nodes, each one associated with a variable xi, and M function
nodes, each one associated with a function ψa. To distinguish variable from function
nodes, the former will be represented by circles, and the latter by squares. Every
factor graph is bipartite: an edge can join only a variable node to a function node;
in particular the variable node i is joined to the function node a if and only if i ∈ ∂a.
Then the parts of Fψ are a variable nodes set V , and a function nodes set F . A
probability distribution like (2.12) together with its factor graph is usually called
graphical model.

A factor graph representation of an Ising model defined on a bidimensional square
lattice is given in Figure 2.1, where the following associations between the factors of
Equation 2.14 and the graph’s components are made:

i

≡ eβhixi ,

ji

≡ eβJxixj .

The generic factor graph is made up of several connected components. It is impor-
tant to note that variables belonging to disconnected components are statistically
independent: indeed in this case, by definition of function node, the joint probability
distribution of all the variables is factorized in the product of the probability distri-
butions of the connected components. This fact underlies the way the conditional
independence structure of the variables is encoded in the graph.

Definition 2.1 (Conditional independence). Let A, B, S ⊆ [N ] be three disjoint
subsets of the variable nodes, and denote by xA, xB and xS the corresponding sets
of variables. If the conditional probability distribution ψ(xA, xB|xS) can be written
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xA

ψa

xS

ψb

xB

(a) The unique path connecting A
to B passes through S.

xA

∼
ψa

∼
ψb

xB

(b) Conditioning upon xS creates
two disconnected components.

Figure 2.2. Example of conditional independence between variables.

as:
ψ(xA, xB|xS) = ψ(xA|xS)ψ(xB|xS), (2.15)

then the variables xA, xB are said to be conditionally independent with respect to
S.

Graphically the conditional independence of xA and xB is reflected in the absence
of paths on the factor graph joining a node of A to a node of B without passing
through S [MM09]. Let us consider, for example, a tree factor graph. If i is a
variable node, and A = {j ∈ V \ {i} : ∃a ∈ F such that i, j ∈ ∂a}, then ∀j, k ∈ A,
xj and xk are conditionally independent with respect to i. This property underlies
the exactness of the Bethe method (subsection 2.4.3) for graphical models defined on
trees. In Figure 2.2a the three sets A, B and S contain each one only a single variable
node; conditioning upon a variable xi is equivalent to eliminating the corresponding
variable node from the graph, and modifying the adjacent function nodes accordingly:
then by conditioning on xS the factor graph becomes the same as that of Figure 2.2b,
where the factors associated with the function nodes a and b, that are the adjacent
function nodes to the removed variable, are different.

2.4 Mean Field Approximations
Quite often the computation of partition functions poses a formidable problem from a
mathematical point of view. For this reason, it is important to develop approximate
methods that allow us to analyze the most relevant physical aspects of the original
problem.

2.4.1 The naïve mean field approximation

Suppose that a system S is defined by a set of N variables x = (x1, ..., xN ), with xi
taking values in a finite alphabet X ∀i, and by a probability distribution ψ(x) of
the form (2.3) that we write as follows:

ψ(x) = 1
Z

M∏
a=1

ψa(x∂a). (2.16)

The heart of the mean field approach relies on the attempt to ensure that some
variables, that in the starting model are correlated, become independent in the
approximate one. In the naïve MFA, that is the simplest MFA, all the correlations
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between variables are removed. This is achieved by replacing ψ(x) with a distribution
p(x) of the form:

p(x) =
N∏
i=1

bi(xi), (2.17)

i.e., p(x) belongs to the set FS of all possible completely factorized distributions
defined on the phase space of S. In order to choose exactly p(x), the fundamental
idea is to apply in FS the variational principle (2.4), i.e. to look in this space for the
p(x) that minimizes the free energy functional F . If the xi’s are Ising-like variables,
e.g. xi ∈ {−1, 1}, the bi’s, called believes, can be expressed without loss of generality
in the form:

bi(xi) = 1 +mixi
2 ,

where mi ∈ R is a so-called mean field parameter. As m = (m1, ...,mN ) defines
uniquely a probability distribution in FS , the minimization of the free energy
functional in FS for a system with a binary alphabet becomes the search for the
global minimum of a function f(m) of N variables mi:

f(m1, ...,mN ) = F [p (x;m)] = 〈H(x)〉p −
1
β
S [p (x;m)] , (2.18)

where the notation p( · ;m) emphasizes that p is fixed by the realization of the mean
field parameters, and 〈H(x)〉p indicates the expected value of H with respect to p.
In order to be concrete let us consider the example of an Ising model defined on a
square lattice in d dimensions; in this case the energy H takes the form:

H = −1
2
∑
i,j

Jijxixj −
N∑
i=1

hixi, (2.19)

where the first summation is extended to all the pairs (i, j), 1 < i, j < N , and:

Jij =
{

1 if |i− j| = 1
0 otherwise.

(2.20)

The extremality conditions for the minimum, obtained by substituting (2.17) in
(2.18), and by imposing ∂f

∂mi
= 0, take the following form:

mi = tanh

β
∑

j

Jijmj + hi

 ∀i, (2.21)

that is a system of N coupled self-consistent equations for m. The system (2.21)
provides the best guess for the mean field parameters m? in this approximation.
Remarkably enough, for hi = 0 it predicts a transition temperature β−1

c below which
a spontaneous magnetization appears. Indeed, for β > βc = 1/2d the free energy
develops two minima, corresponding to two opposite magnetization values.

Solving mean-field expressions like Equation 2.21 in general is considerably
simpler than computing the partition function and, once the fixed point is known, it
is possible to estimate several physical observables of the system. For more details
the reader is referred to [Par88].
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2.4.2 Region-based approximations

In order to go beyond the naïve MFA it is necessary to reintroduce some correlations
in the approximated model. A possible way to do that is by the region-based
approximation of the free energy [YFW05]. The idea is to divide the starting system
into regions suitably chosen, to compute the single-region free energies, and then to
approximate the total free energy with a combination of single-region contributions.
Definition 2.2 (Region). A region R of a factor graph is a pair (VR, FR), where
VR denotes a set of variable nodes and FR a set of function nodes, such that if a
function node a belongs to FR, all the variable nodes neighboring a are in VR.

The choice of the set R of regions into which we have to break up the factor
graph is in principle arbitrary, but we require that no function or variable nodes are
excluded from all the regions, in order not to reduce the size of the phase space of
S. Suppose to choose a set of regions R; let us denote by {PR} a set of probability
distributions, one for each R ∈ R, such that ∀R PR is a function of the variables
belonging to R only. It is possible to define a so-called region-based free energy
functional FR, that associates with a given {PR} a real number as follows:

FR
[
{PR}

]
≡
∑
R∈R

cR
∑
xR

PR(xR)ER(xR) +
∑
R∈R

cR
∑
xR

PR(xR) logPR(xR)

≡ UR
[
{PR}

]
− SR

[
{PR}

]
,

(2.22)

where:
ER = −

∑
a∈FR

logψa(x∂a), (2.23)

and it has been set β ≡ 1 for simplicity of notation. It is important to note that
each node can belong to more than one region: the cR constants are introduced to
assure that every factor and variable node contributes just one time to FR; this is
guaranteed by the conditions:∑

R∈R
cRI(i ∈ VR) =

∑
R∈R

cRI(a ∈ FR) = 1 ∀ a ∈ VR, ∀ i ∈ FR, (2.24)

where I(·) is the indicator function:

I(condition) =
{

1 if the condition is satisfied
0 otherwise.

(2.25)

It is worth noting that even if we chose as {PR} the set of marginals µR(xR) of the
true probability distribution ψ(x) , in general FR (2.22) is different from the free
energy functional (2.4) computed on ψ(x). Indeed in this case the average region-
based energy UR is equal to the average true energy, but in general the region-based
entropy SR is different from the true one. In Proposition 2.1 are discussed some
examples in which FR is equal to F .
Proposition 2.1. If the distributions {PR} are equal to the corresponding exact
marginal probabilities {µR}, in formulas:

PR(xR) =
∑
xV \R

ψ(x) ≡ µR(xR) ∀R ∈ R, (2.26)

then we can state the following:
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(i) the average region-based energy:

UR
(
{PR}

)
=
∑
R∈R

cRER(PR) (2.27)

is exact, i.e., it is equal to the energy term of the free energy of the real
distribution.

(ii) if all the regions R are disjoint, then also SR is exact, i.e., it is equal to the
entropy term of the free energy of the real distribution.

(iii) if the exact probability distribution ψ(x) is uniform, then SR is exact.

In summary the idea underling this approximation is to break up the factor
graph into a set of regions that include every function and variable nodes, and to
write the overall free energy as the sum of the free energies of all the regions, with a
focus on subtracting out the excess contribution produced by the overlaps.

After choosing the appropriate set of regions, depending on which correlations
we want to take into account, following the same path of the naïve MFA, the idea
is to find the best guess for the probability distributions {PR} by minimizing the
region-based free energy functional. However, if we want to approximate with {PR}
the set of the corresponding true marginals of the model, there is a set of necessary
constraints to impose:

• each PR has the form of a probability function, then it must be normalized to
one, and satisfy 0 ≤ PR(xR) ≤ 1 for any state xR;

• for every pair of regions R1 and R2 that share a set O of variable nodes, all
the marginals in O must be consistent:∑

xR1\O

PR1

(
xR1

)
=

∑
xR2\O

PR2

(
xR2

)
. (2.28)

In general, increasing the size of the regions improves the approximation one obtains
by minimizing the region-based free energy [YFW03]. As shown in Proposition 2.1
the energetic term is exact by construction, then there is an improvement arising in
the entropic term, that becomes increasingly accurate as the regions become larger.
In the limit where a single region covers all the nodes in the system clearly the
region-based approximation becomes exact.

2.4.3 The Bethe approximation

The Bethe approximation (BA) belongs to the class of the region-based approxi-
mations. It is more refined than the naïve MFA, since it reintroduces correlations
between variables entering the same interaction. In the BA we take the regions
included in R to be of two different types: large regions and small regions. The
set RL of large regions is in one-to-one correspondence with the set of the function
nodes, as each element belonging to RL contain exactly one function node and all
the variable nodes neighboring it. Otherwise RS , the set of small regions, coincides
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with the set of the variable nodes of the graphs. The cR’s are given, for each region
R ∈ R, by:

cR = 1−
∑

S∈S(R)
cS , (2.29)

where S(R) is the set of all the regions S such that the set of variable and factor
nodes in R are a subset of those in S. Moreover {PR} is composed by a set of
distributions Pa(x∂a), one for each function node of the graph, and by a set of
distributions Pi(xi), one for each variable node. Then the region-based energy (2.22)
in the Bethe case is:

UBethe = −
∑
a∈F

∑
x∂a

Pa(x∂a) logψa(x∂a), (2.30)

and the Bethe entropy:

SBethe = −
∑
a∈F

∑
x∂a

Pa(x∂a) logPa(x∂a)−
∑
i∈V

(
1− |∂i|

)∑
xi

Pi(xi) logPi(xi). (2.31)

The consistency constraints (subsection 2.4.2) become:∑
xi

Pi(xi) =
∑
x∂a

Pa(x∂a) = 1,
∑
x∂a\i

Pa(x∂a) = Pi(xi), ∀i ∈ ∂a and a ∈ F, (2.32)

where the normalization condition on Pa(x∂a) is automatically fixed by the others,
and then can be omitted. In order to find the minimum of FBethe, subject to the
constraints (2.32), we define the Lagrangian L:

L = FBethe +
∑
i

γi

[∑
xi

Pi(xi)− 1
]

+
∑
xi

∑
(i,a)∈E

λai (xi)

∑
x∂a\i

Pa(x∂a)− Pi(xi)

 ,
(2.33)

where the superscript on the generic Lagrange multiplier λ is a function node
index, and the subscript is a variable node index. Without taking into account the
normalization conditions, every Pa(x∂a) is fixed by |X ||∂a| parameters, and Pi(xi)
by |X | ones. Then the extremality condition for (2.33) consists in setting to zero
the derivatives of L with respect to the M |X ||∂a| possible values of the Pa(x∂a)’s,
and to the N |X | possible values of the {Pi(xi)}’s:

∂L
∂Pa(x∂a)

= −
[
log ψa(x∂a)

Pa(x∂a)
+ 1

]
+
∑
i∈∂a

λai (xi) ≡ 0,

∂L
∂Pi(xi)

= (1− |∂i|) [logPi(xi) + 1] + γi −
∑
a∈∂i

λai (xi) ≡ 0,
(2.34)

from which it follows:

Pa(x∂a) = ψa(x∂a) exp

1−
∑
i∈∂a

λai (xi)

 , (2.35)

Pi(xi) = exp
(∑

a∈∂i λ
a
i (xi)− γi

1− |∂i| − 1
)

= 1
Zi

exp
(
−
∑
a∈∂i λ

a
i (xi)

|∂i| − 1

)
, (2.36)
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where Zi, or equivalently γi, is fixed by the normalization condition on Pi, and the
other Lagrange multipliers λai (xi) by the condition of local consistency:

∑
x∂a\i

ψa(x∂a) exp
(

1−
∑
i∈∂a

λai (xi)
)

= 1
Zi

exp
(
−
∑
a∈∂i λ

a
i (xi)

|∂i| − 1

)
(2.37)

Equation 2.37 defines a set of |E|(|X |−1) coupled equations that fix the |E|(|X |−1)
λai (xi) multipliers.

There exists a particular class of graphical model whose topology alone guarantees
the exactness of the Bethe region-based decomposition of the free energy: the class
of tree graphical models, i.e., graphical models defined on tree graphs. The fact that
Equation 2.30 and Equation 2.31 define the true free energy on a tree is a direct
consequence of the following property:

Proposition 2.2. In a tree graphical model the joint probability distribution ψ(x)
of all the variables can be written in terms of the marginals µa(x∂a) and µi(xi) as:

ψ(x) =
∏
a∈F

µa(x∂a)
∏
i∈V

µi(xi)1−|∂i| (2.38)

Proof. Equation 2.38 can be proved by induction on the cardinality |F | ≡ M of
the set of function nodes. For M = 1, just one interaction, |∂i| = 1 ∀i, and then
ψ(x) is equal to its marginal on the set of the variable nodes linked to the only
function node: Equation 2.38 holds. Now assume that the property is valid for any
tree graphical model with |F | ≤ M , and consider a specific factor graph T ′ with
|F | = M + 1. T ′ can be constructed attaching a single function node a to a factor
graph with M function nodes. The fundamental observation is that the only way
to attach a function node to a tree, with the constraint of preserving in the final
graph the tree topology, is by connecting it to a single variable node i, conversely
there would appear cycles. Denoting by x the set of variables of the T tree, and by
x′ those of T ′, it follows that:

ψT ′
(
x′
)

= ψT (x)ψ(x∂a\i|xi) = ψT (x)µa(x∂a)
µi(xi)

, (2.39)

that is a consequence of the fact that x∂a\i and x are conditionally independent
variables. Using this result together with the induction hypothesis we obtain:

ψT ′(x′) =
∏

b∈F (T )
µb(x∂b)

∏
j∈V (T ),
j 6=i

µj(xj)1−|∂j|µi(xi)1−
(
|∂i|−1

)
µa(x∂a)
µi(xi)

, (2.40)

that is equal to Equation 2.38.

Thanks to Proposition 2.2, the energetic and the entropic terms of the exact free
energy,

F [ψ(x)] ≡ −
∑
x

ψ(x) log
∏
a∈F

ψa(x∂a) +
∑
x

ψ(x) logψ(x), (2.41)
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Figure 2.3. On the left an example of small tree. On the right the subtree Ga→0 is
represented with yellow leaves.

can be rewritten, respectively, as:∑
x

ψ(x) log
∏
a∈F

ψa(x∂a) =
∑
a∈F

∑
x∂a

µa(x∂a) logψa(x∂a),

∑
x

ψ(x) logψ(x) =
∑
x

ψ(x)
(∑
a∈F

logµa(x∂a) +
∑
i∈V

(1− |∂i|) logµi(xi)
)
.

(2.42)

Substituting (2.41) in (2.42) one obtains:

F [ψ(x)] = −
∑
a∈F

∑
x∂a

µa(x∂a) log ψa(x∂a)
µa(x∂a)

+
∑
i∈V

∑
xi

(1− |∂i|)µi(xi) logµi(xi), (2.43)

that proves the exactness of the BA for models defined on trees, since (2.43) is equal
to the free energy derived with the BA (2.30, 2.31).

It is possible to derive on trees an iterative algorithm (section 2.4.4) known as
Belief propagation (BP) that, in time linear in the number of nodes, computes
the exact marginals of the graphical model distribution, provided the factor nodes
have bounded degree, and the alphabet size is bounded as well [MM09]. In other
words when there are no cycles, i.e., on trees, BP finds the global minima of the
Bethe free energy. Moreover it turns out that a set {PR} is a fixed point of the
iterative procedure prescribed by BP algorithm in any graph if and only if it is a
local stationary point of the Bethe free energy [YFW03].

In section 2.4.4 belief propagation is introduced with the aim of putting the Bethe
approximation in a different perspective. At the end a less algorithmic approach is
discussed, that allows one to study systems defined on random graphical models.

2.4.4 Cavity Method

Belief Propagation

A typical problem to solve on a graphical model is the computation of the marginal
distributions of a set of variables: this allows, for example, to compute the free
energy in the Bethe approximation. When the factor graph has no cycles, such kind
of computation can be performed efficiently by a crucial property: the distributivity
of the sum with respect to the product [AM00]. Let us see how to exploit this basic
property on the simple example reproduced in Figure 2.3. We begin by assuming
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that we want to compute the marginal at node 0 on the tree G:

µ(x0) ∝
∑
xV \0

∏
`∈F

ψ`(x∂`). (2.44)

Node 0 is the root of three subtrees of G, that we can distinguish by the name of the
factor node neighbor of 0 that they contain, namely Ga→0 = (Va→0, Fa→0;Ea→0),
Gb→0 = (Vb→0, Fb→0;Eb→0), Gc→0 = (Vc→0, Fc→0;Ec→0), as shown in Figure 2.3.
We can rewrite the right side of Equation 2.44 as:∑
xV \0

∏
`∈Fa→0

ψ`(x∂`)
∏

m∈Fb→0

ψm(x∂m)
∏

n∈Fc→0

ψn(x∂n)

∝

 ∑
xVa→0\0

∏
`∈Fa→0

ψ`(x∂`)


 ∑
xVb→0\0

∏
m∈Fb→0

ψm(x∂m)


 ∑
xVc→0\0

∏
n∈Fc→0

ψn(x∂n)


∝ µa→0(x0)µb→0(x0)µc→0(x0).

(2.45)

The second line is obtained from the first by using the distributive property. In
the last step we denoted by µa→0(x0), µb→0(x0) and µc→0(x0) the marginals with
respect to the factor graphs, respectively, Ga→0, Gb→0 and Gc→0. The problem of
computing a marginal with respect to G is then reducible to the one of computing
marginals with respect to subgraphs of G. This procedure can be repeated recursively.
Consider the subtree Ga→0. This can be decomposed into the factor node a, plus
the subtrees G1→a and G2→a. Thanks to the distributive property again, it follows
that:

µa→0(x0) ∝
∑

xVa→0\0

∏
`∈Fa→0

ψ`(x∂`)

∝
∑
x1,x2

ψa(x∂a)

 ∑
xV1→a\1

∏
m∈F1→a

ψm(x∂m)


 ∑
xV2→a\2

∏
n∈F2→a

ψn(x∂n)


∝
∑
x1,x2

ψa(x∂a)ν1→a(x1)ν2→a(x2),

(2.46)

where the function ν1→a(x1) and ν2→a(x2) are defined by Equation 2.46 with the
prescription of normalization to one. These arguments did not use the specific
structure of the factor graph in Figure 2.3, but they instead hold for any tree.
Namely given a tree G, and a directed edge a → i (factor-to-variable) or i → a
(variable-to-factor) we can define the subgraphs Ga→i or Gi→a as above and the
corresponding so-called “cavity marginals” of the variable i: µa→i(xi) and νi→a(xi).

Definition 2.3 (cavity marginals). The functions µa→i(xi) and νi→a(xi) are cavity
marginals, i.e., marginal probability distributions on cavity graphs. This means that
µa→i(xi) would be the true marginal of xi if a hole were dug in the starting graph,
by removing from the definition of the joint probability distribution that defines
the model all the {ψb}b∈∂i\a’s. Analogously νi→a(xi) is a cavity marginal because
it would be the true marginal of xi in a graph obtained from the starting one by
removing the function node labeled with a.
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ai

µa→i(xi)

i

νi→a(xi)

∂i \ a

Figure 2.4. The marginal distribution of the variable i is µa→i(xi) on the cavity graph on
the left, and νi→a(xi) on that on the right. The dashed line on the graph on the right is
used to underline the neighborhood of i.

From Equation 2.45 and Equation 2.46, rewritten for a generic tree G and generic
nodes, it follows that the cavity marginals must satisfy the following equations, that
are called Belief propagation equations:

νi→a(xi) ∝
∏

b∈∂i\a
µb→i(xi)

µa→i(xi) ∝
∑
x∂a\i

ψa(x∂a)
∏

k∈∂a\i
νk→a(xk).

∀ (i, a) ∈ E (2.47)

Once the cavity marginals are known, the marginal of a variable xi is simply:

µ(xi) ∝
∏
b∈∂i

µa→i(xi). (2.48)

It is worth noting that the cavity marginals are the unique solution of the Equa-
tion 2.47, from the recursive argument discussed above.

We have derived Equation 2.47 for a generic tree, but one may ask what hap-
pens if we use the cavity marginals, and in particular Equation 2.48, to estimate the
true marginals of a model defined on a generic factor graph with cycles. Firstly in
the general case it has to be discussed how to solve Equation 2.47. The main way
to solve BP equations is by an iterative procedure, defined by the Belief propaga-
tion algorithm. Belief propagation is an iterative “message-passing” algorithm: the
messages are probability distributions that take value in the space of all possible
probability distributions over the single-variable alphabet X , and are sent from one
node to another, connected to them by a link. For each edge (i, a), where i is a
variable node and a a function node, at the t-th iteration are defined two messages:
one for the variable-to-function direction ν(t)

i→a(xi), and another message µ(t)
a→i(xi) for

the other direction. The messages are updated over time according to the following
rule:

ν
(t+1)
i→a (xi) ∝

∏
b∈∂i

µ
(t)
b→i(xi)

µ
(t+1)
a→i (xi) ∝

∑
x∂a\i

ψa(x∂a)
∏

k∈∂a\i
ν

(t)
k→a(xk),

∀ (i, a) ∈ E. (2.49)



2.4 Mean Field Approximations 28

When ∂i\a is an empty set, νj→a(xj) is chosen as the uniform distribution. Similarly
if ∂a \ j is empty then µa→j(xj) = ψa(xj). In tree-graphical model the following
theorem holds [MM09].

Theorem 2.4. Consider a tree-graphical model such that the distance between any
two nodes is at most t∗, then:

1. irrespective of the initial condition, the BP update equations (2.49) converge
after at most t∗ iterations: for any edge (i, a), and any t > t∗, ν(t)

i→a = ν∗i→a,
µ

(t)
i→a = µ∗i→a;

2. the fixed point messages provide the exact marginals.

Then, by exploiting the distributive property on trees, it is possible to compute
marginals in a time T = O(t∗), instead of spending T = O

(
|X |N

)
, where N is the

number of variable nodes, for a brute force summation of Equation 2.44. Moreover,
even on factor graphs with cycles, often BP estimates get to be fairly accurate.
For example in the case of the assignment problem on generic bipartite graph, BP
has been proven to yield exact results [BSS05]. However for graphical models with
cycles BP is not guaranteed to converge in general. Then, because the BP fixed
points correspond to Bethe free energy minima as stated in subsection 2.4.3, one
could simply choose to minimize the Bethe free energy directly. Such free energy
minimization are slower than BP algorithm, but they are at least guaranteed to
converge [YFW03]; on the other hand, empirical analysis indicates that the failure of
BP convergence is a clue that the results from minimizing the Bethe approximation
will also be quite inaccurate [WT01,YFW03].

Random Graphical Models: the random-instance BP

The Belief propagation algorithm can be run on the factor graph associated with
a given graphical model, in order to try to compute the fixed point messages of
Equation 2.47. However, in chapter 5, we will be interested in the study of a
graphical model not for a single realization of the problem, but for an ensemble
of possible instances. Then, for example, there will not be a given factor graph,
but an ensemble of factor graphs, over which one is interested in compute average
properties of the solution. We will introduce the concept of disorder in the next
chapter. For the moment, let us simply suppose that we want to average our results
on a graph ensamble and, possibly, on some additional randomness in parameters
appearing in the messages. Since in this frame the messages themselves become ran-
dom variables, their probability distribution become the quantity of interest [MM09].
This distribution can be characterized in the large system limit starting from the
BP equations Equation 2.47, as we shall now see.

Firstly a random graphical model is an ensemble of probability distributions on
x = (x1, ..., xN ) which have the form:

ψ(x) =
∏
a∈F

ψa(x∂a), (2.50)
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where the factor graph is denoted as usual as G = (V, F ;E) and the factors ψa
possibly depend on some random parameter J . For any possible factor-node degree
|∂a| = k, we are given a list of feasible factors ψk(x1, ..., xk; J), marked by a parameter
J , and a distribution P kJ over the set of all possible realization of J . Once the degree
is extracted according with the degree distribution of the ensemble, the corresponding
parameter is drawn with distribution P kJ , and the function ψa(·) is taken to be equal
to ψk( · ; Ja). Then the random graphical model is fully characterized by the graph
ensemble, that fixes the distribution of the variable and function nodes degrees, the
set of distributions P kJ , and the list of possible factors, denoted by {ψk( · ; Ja)}.

Now let us indicate the BP messages updating rules (2.47) for a given realization
of the random graphical model in a compact way as

Ψi→a({µ(t)
b→i : b ∈ ∂i \ a}) = Ψi→a(µ(t)

1 , ..., µ
(t)
|∂a|−1)

Φa→i({ν(t)
j→b : j ∈ ∂a \ i}) = Φa→i(ν(t)

1 , ..., ν
(t)
|∂i|−1).

(2.51)

Even if not explicitly indicated, both updating rules in Equation 2.51 depend on the
realization of the parameters {J}. For locally tree like graph ensembles it can be
proved the following result:

Theorem 2.5 (Density evolution). Let t ≥ 0 and let (i, a) be a uniformly random
edge in the factor graph. Then, as N →∞, the messages µ(t)

a→i and ν
(t)
i→a converge

in distribution to the random variables µ(t) and ν(t), respectively, defined through the
following so-called density evolution equations [MM09,DMS13]:

ν(t+1) d= Ψ`(µ
(t)
1 , ..., µ

(t)
ζ−1),

µ(t+1) d= Φk(ν
(t)
1 , ..., ν

(t)
κ−1).

(2.52)

Here the symbol y d= z indicates that y and z are equal in distribution. Moreover the
messages µ(t)

b , with b ∈ {1, ..., `}, are independent random copies of µ(t), and ν(t)
j ,

with j ∈ {1, ..., κ}, are independent random copies of ν(t). If the degree distribution
of the variable nodes is pz and the degree distribution of the factor nodes is qk, then
the degree distribution of ` and κ are

p̂ζ = ζpζ∑∞
z=1 zpz

, q̂κ = κqκ∑∞
k=1 kqk

(2.53)

The numerical solution of the density evolution equations (2.52) takes a crucial
role, as will be shown in chapter 5 in our study of the matching problem, because
they allow to compute observables of the random graphical model.
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Chapter 3

Disordered Systems

In this chapter some basic concepts about disordered systems are presented, in
order to lay the ground for the discussion about the connection between statistical
mechanics and combinatorial optimization in the next chapters.

3.1 Disorder, frustration and self-averageness
In Section 2.2 we introduced the Ising model, in which the Hamiltonian of the system
is fixed by the coupling constants J , and by a set of external fields hi acting on
the spins. When the external field is site independent the problem is considerably
simplified by the translational invariance of the system. Unfortunately this symmetry
is not realized in many real cases due to the presence of disorder : vacancies in the
arrangement of atoms, competition between ferromagnetic and antiferromagnetic
interactions and lattice irregularities are just a few examples. Some types of disorder
can be modelized by considering an Hamiltonian in which a set of random parameters
{J1, J2, ..., JM} ≡ {J} is introduced:

H = HJ (σ) . (3.1)

As in Equation 3.1, each quantity that depends on the parameters {J} will be
denoted with a subscript J . In Equation 3.1 σ specifies the configuration of the
system, and the generic Jk ∈ {J} is randomly extracted from a certain probability
distribution that specifies the disorder. A remarkable case is that of quenched
disorder, in which disorder can be considered fixed on the time scale over which the
degrees of freedom of the system fluctuate: the thermodynamic properties of the
system have to be computed at a fixed instance of the disorder. In the following
discussions we will be interested in this kind of quenched-disorder calculation.

A key feature of disorder is that it is a possible source of frustration: it becomes
impossible to satisfy all the couplings at the same time, as it would be in a ferro-
magnetic system; in other words there exist a set of local constraints in conflict each
other. A paradigmatic example can be found in the Edward-Anderson model (EAM).
The EAM belongs to the class of spin glass models, i.e. the class of spin systems
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with random interactions. Its Hamiltonian can be written in the form:

H =
∑
(i,j)

Jijσiσj , (3.2)

where σi ∈ {−1, 1}, the sum is performed over the nearest neighbors of an hypercubic
lattice in D dimension, and Jij are independent and identical distributed random
variables. In this case the following situation can arise:

? ↓

↓↑

+

+

−

+ (3.3)

where the “+” and “−” signs next to the edges represent the signs of the couplings
between spins. In Figure 3.3 it is clear that a configuration of the spin on the left
that minimizes at the same time the energy contribution of all edges separately
does not exist. Then in a frustrated system the ground state cannot be found by a
search that minimizes locally all the constraints as, for example, in the translational
invariant Ising model. This fact in general makes considerably more difficult the
search for the ground state configuration, and the ground state energy.

Self-averageness

By constructing an Hamiltonian with a set of random parameters {J}, as in Equa-
tion 3.2, for a generic size of the system each observable depends on the realization
of {J}, including, for example, the free energy density:

F (N)
J

N
≡ f (N)

J = − 1
βN

log
∑
{J}

e−βHJ (σ), (3.4)

where N is the size of the system. As it is utterly impossible to measure the
precise realization of the quenched parameters on a physical sample, the idea is to
average over all possible realizations, with the aim of trying to extract informations
representative of all the samples. Then for example, one tries to compute the
expected value over disorder of f (N)

J ,

f (N) ≡ f (N)
J = − 1

βN
logZJ , (3.5)

where the bar denotes the average over disorder. It turns out that, if the form of
the interaction is not too pathological, in the thermodynamic limit the free energy
density assumes the same value for each set of quenched parameters which has
non vanishing probability [MPV87]. This property is called self-averageness and in
formulas reads:

lim
N→∞

Pr
(∣∣∣∣f (N)

J − f (N)
J

∣∣∣∣ > ε

)
= 0, for ε > 0, (3.6)

therefore sample-to-sample fluctuations go to zero in the limit of large system, and
then one can expect that a theoretical calculation of the mean value of fJ over the
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whole ensemble gives the same answer as the experiments. For models with short
range interactions a general argument allows to argue that the sample-to-sample
fluctuations are proportional to 1/

√
N:(

f
(N)
J − f (N)

)2
= O

( 1
N

)
. (3.7)

Indeed let us divide our d-dimensional system in a number of macroscopic sub-systems.
The total free energy will be the sum of the free energies of the sub-systems, plus a
contribution coming from the interactions at the interfaces between the sub-systems,
that, in the large system size limit, scale, respectively, as N and N

d−1
d . Once we

compute the free energy density, the surface contribution can be neglected, and the
sub-systems free energies are independent random variables: therefore we can apply
the central limit theorem to the sum to get the scaling in Equation 3.7 [FH93,CC05].

3.2 The replica trick
The computation of observables for disordered systems requires therefore to average
over the quenched disorder the logarithm of the sample-dependent partition function
(3.5). A famous and powerful technique, called replica trick, is usually adopted for this
task. It consists in computing this average by an analytic continuation of the average
of the partition function of n uncoupled replicas of the initial system [MPV87].

Let us firstly denote by P ({J}) the probability distribution of the quenched
parameters, and introduce the following quantities:

Zn =
∑
{J}
P ({J}) (ZJ)n , fn = − 1

βnN
logZn, (3.8)

where (ZJ)n is the average over disorder of the replicated partition function. At this
point the fundamental observation is that:

lim
n→0

fn ≡ f0 = fJ , (3.9)

where the normalization condition of the probability distribution have been used,
and the relation:

xn ≈ 1 + n log x for n ≈ 0 and x > 0. (3.10)

The replica trick consists in computing fn for integer n, using the fact that in this
case we can write:

(ZJ)n =
∑
σ1

∑
σ2

· · ·
∑
σn

exp
{
−

n∑
a=1

βHJ (σa)
}
, (3.11)

this allows to obtain fn for integer n. The next step is to extent n to an analytic
function of n, and finally to compute f0 = f .

This method finds a paradigmatic application in the solution of the infinite range
spin glass, the Sherrington-Kirkpatrick model (SKM), defined by the Hamiltonian:

HJ =
∑
i<j

Jijσiσj − h
N∑
i=1

σi, (3.12)
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where σi ∈ {−1, 1}, h is a uniform magnetic field, and the couplings are random
variables that, just to be concrete, we can extract from a Gaussian distribution of
the form:

P({J}) =

√
N

2πe
−N J2

2 . (3.13)

In Equation 3.13 the variance has been taken equal to 1
N in order to guarantee the

extensivity of the energy; in fact in this case all the couples of variables interact,
and then the term of interaction between spins in HJ has O(N2) addends. It can
be found [Nis01] that the average replicated partition function can be written as

Zn = exp
(
β2nN

4

)∫ ∏
a<b

dqab exp

−β2N

2
∑
a<b

q2
ab +N log Ξ[q]

 , (3.14)

where:

Ξ[q] =
∑

σ1,...,σn

exp

β2∑
a<b

qabσ
aσb + βh

∑
a

σa

 , (3.15)

and q is an n× n symmetric matrix with elements (q)ab = qab. The exponent of the
integrand in Equation 3.14 is proportional to N , so that it is possible to evaluate
the integral by the Laplace method [Mil06].
In SKM the saddle point condition ∀a, b with a 6= b reads:

qab = 1
β2
∂ log Ξ[q]
∂qab

= 1
Ξ

∑
σ1,...,σn

σaσb exp

β2∑
a<b

qabσ
aσb + βh

∑
a

σa

 . (3.16)

The simplest way to try to find a solution of Equation 3.32 is through the replica-
symmetric (RS) assumption, which consists in considering all the replicas equivalent:

qab ≡ q ∀a, b with a 6= b. (3.17)

This assumption is motivated by the fact that the function at the exponent of the
integrand in Equation 3.14 is left invariant when we exchange some of the lines or
the rows of the matrix q, and therefore the group of permutations of n elements
is a symmetry of the problem. However this approach gives results at variance
with the computer simulations below a certain temperature [KS78]; at T = 0 for
example one obtains a negative entropy, when the entropy of the model must be
non negative by definition. The origin of this pathological behavior was identified by
Parisi [Par83], who showed in particular that an infinite-step sophisticated breaking
of the replica symmetry is needed. For the sake of brevity, and because the problem
we are interested in show no replica symmetry breaking, we will not discuss here
Parisi’s solution [MPV87].

3.3 A cavity calculation for the RS solution of the SKM
It is possible to derive the replica-symmetric solution of the SKM through a cavity
calculation. Following the presentation of [Méz15], in this section this approach is
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presented in the case of zero external magnetic field, h = 0, in order to give a first
example of application of the cavity method.

The basic idea is to go from a SK system ΣN composed of N spins to a ΣN+1
system that has N + 1 spins, assuming that in the thermodynamic limit there is
no difference between observables computed in both systems. Let us denote by σ0
the spin added to the system of N spins to create ΣN+1, and by J0j the coupling
connecting it to the generic spin σj in ΣN+1. If we write the set of J0i as {J0}, and
that of Jij , with i, j 6= 0, as {J}, the probability distributions of disorder in ΣN and
ΣN+1 read, respectively:

PN ({J}) =
∏
i<j

PN (Jij) ∝ exp

−N2 ∑
i<j

J2
ij


PN+1({J}, {J0}) =

∏
j,i<j

PN+1(Jij , J0j) ∝ exp

−N + 1
2

∑
i<j

J2
ij +

∑
j

J2
0j

 ,
(3.18)

and the probability distribution of a certain configuration of spins in ΣN+1 is given
by the canonical distribution:

ψN+1(σ, σ0) ∝ exp

−βHN (σ) + βσ0

N∑
j=1

J0jσj

 , (3.19)

where σ = {σ1, ..., σN}, and
∑
j J0jσj ≡ φc is the so-called cavity field acting on σ0.

It is useful at this point to find the probability distribution of φc, a computation
that can be done by evaluating all its the moments. The working assumption of the
cavity method at the RS level can be stated by saying that the susceptibility:

χ = 1
N

∑
i<j

(〈σiσj〉 − 〈σi〉〈σj〉) (3.20)

has to be finite. This is equivalent to say that two randomly chosen spins are
uncorrelated with probability that tends to one in the thermodynamic limit, as could
happen if the system were defined on a tree (subsection 2.4.4). By this hypothesis
we start with the computation of the probability distribution of the cavity field
in ΣN , PN (φc): it is worth noting that in this case φc can be defined as the field
measured at site 0 once σ0 has been removed from ΣN+1. Let us consider:

〈φc〉N =
∑
i

J0i〈σi〉N
N→∞−−−−→ φ, (3.21)

〈(φc)2〉N − 〈φc〉2N =
∑
i,j

J0iJ0j(〈σiσj〉N − 〈σi〉N 〈σj〉N ), (3.22)

where the thermal average has been denoted by angle brackets, and φ has been used
to indicate the thermodynamic limit of 〈φc〉N . Because the sum in Equation 3.20
involves O(N2) terms, χ will be finite as long as the connected correlation of σi and
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σj , namely, 〈σiσj〉N − 〈σi〉N 〈σj〉N , is of order 1/N. Then the sum in Equation 3.22
will be dominated by the terms with i = j, and for N large holds:

for i = j:
〈

(φc)2
〉
N
− 〈φc〉2N =

∑
i

J2
0i

(
1− 〈σi〉2N

)
= 1− 1

N

∑
i

〈σi〉2N = 1− 〈σi〉2N = 1− q,
(3.23)

where in the second equality we have used Jij ∼ 1/
√
N, while in the third we have

substituted the sum over all sites with the average over the disorder at a single
site, due to the self-averageness of the magnetization. Finally, we have used the
definition of the so-called Edwards-Anderson order parameter 〈σi〉2N = q. Using
similar reasoning one finds that all odd moments bigger than the first are zero, while
all even moments are given by the expression:〈

(φc)2p
〉

= (2p− 1)!!(1− q)p, (3.24)

that are the moments of a gaussian distribution with variance 1− q. Therefore the
probability distribution of the cavity field is:

PN (φc) ∝ exp
(
−(φc − φ)2

2(1− q)

)
. (3.25)

Now let us consider the joint probability distribution of φc and σ0 in the ΣN+1
system:

PN+1(φc, σ0) ∝ exp
(
−(φc − φ)2

2(1− q) + βφcσ0

)
. (3.26)

The expectation value of the spin σ0 in the ΣN+1 system is:

〈σ0〉N+1 = tanh(βφ) = tanh
(
β

N∑
i=1

J0i〈σi〉N

)
, (3.27)

where the average is taken with respect to the probability density 3.26, integrating
over the cavity field φc. It is interesting to note that the cavity field is not a
self-averaging quantity, in fact φ has non-vanishing fluctuations. By computing its
moments, as before, it is possible to derive the probability distribution P (φ) of φ.
The averaged field is:

φ =
∑
i

J0i〈σi〉N = 0, (3.28)

which is equal to zero because the average of the couplings J is zero. The average
squared field reads:

φ2 =
∑
ij

J0iJ0j〈σi〉N 〈σj〉N = 1
N

∑
i

〈σi〉2N = q. (3.29)

By computing all the higher-order moments, it is possible to show that all the odd
moments are zero, while all the even ones obey a similar relation to that seen in
Equation 3.24. We can thus conclude that φ is Gaussian-distributed:

P(φ) = 1√
2πq exp

(
−φ

2

2q

)
. (3.30)
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Moreover, from the definition of q:

q = 〈σ0〉2N+1, (3.31)

by using Equation 3.30 and Equation 3.26 it follows the self-consistent equation for
the order parameter q:

q =
∫

dφ√
2πq exp

(
−φ

2

2q

)
tanh(βφ)2. (3.32)

It turns out that the replica trick at the replica-symmetric level is equivalent to the
cavity method introduced in subsection 2.4.4. For this reason one often refers to the
cavity method of subsection 2.4.4 as replica-symmetric cavity method.
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Chapter 4

Random Matching Problems
and Statistical Mechanics

In this chapter, a class of matching problems in the presence of disorder is introduced.
In particular, we review some results already known in the literature, obtained by
using techniques of statistical mechanics of disordered systems.

Optimization and disorder

In chapter 1 some optimization problems defined on graphs have been introduced.
Given a definite instance of a certain problem, one can search for the optimal solution
by running specific algorithms. For example, given a bipartite graph with parts of
the same cardinality, and a set of positive weights to associate with its edges, one
can use the Hungarian algorithm to find the optimal assignment (section 5.4.1).

Instead of solving single inputs, it may also be interesting to equip the set of the
instances of a given optimization problem with a probability law, and then to study
the average properties of the problem over such set. Besides its intrinsic interest, this
random-instance approach can also give some insight into the qualitative understand-
ing of the problem and suggest new algorithms and heuristics [MPV87]. Statistical
mechanics has played a central role in this kind of investigations, thanks to many
precious tools developed for the study of disordered systems and phase transitions,
like the replica theory (section 3.2) and the cavity method (subsection 2.4.4). The
fundamental observation [KGV87,MP85,FA86] is to read the cost function as an
energy, the optimal solution as the ground state of a physical system, and to interpret
the average over the instances as a sample average. This correspondence is so virtu-
ous because it turns out that the typical complications that characterize disordered
systems are the same that one usually encounters in the study of random-instance
optimization problems: the presence of quenched disorder, whose realizations are
represented by the instances of the problem, and frustration, that typically arises
from the presence of non-local constraints. Such constraints prevent the ground state
from being found through local research algorithms, i.e. through a local minimization
of the energy. Let us consider, for example, the matching case: a local search for the
minimum cost configuration would match an unmatched node a with the unmatched
neighbor b that satisfies w((a, b)) = minn∈∂aw((a, n)), where w((a, b)) is the weight
associated with the edge (a, b). However, as in the case of spin glasses, this strategy



4.1 The random link matching problem 38

Table 4.1. Comparison between some keywords of combinatorial optimization and statistical
mechanics.

Optimization Statistical mechanics
instance sample

cost function energy
optimal configuration ground state

optimal cost ground state energy

in general is not guaranteed to find the ground state. The Table 4.1 compares some
key words of statistical mechanics and combinatorial optimization.

The reader is referred to [MPV87] for a review of the main results obtained by
using statistical mechanics in order to study random instances of classical combina-
torial optimization problems, like TSP and SAT. In what follows we focus on the
matching problem. Only for this chapter we will denote by 2N , instead that by N ,
the number of nodes of the graphs.

4.1 The random link matching problem
One of the first variants of the matching problem that has been formulated in terms
of statistical physics is the so-called random link matching problem (RM). It is a
minimum weight matching (chapter 1) on the complete graph K2N = (V ;E), in
which the weights1 we of the links e ∈ E are independent and identically distributed
random numbers, drawn from a given probability law ρ(w). Recalling the definition
of Section 5.4.1, the Hamiltonian of the system, H, can be defined as follows:

H =
∑
e∈E

mewe, (4.1)

where:
me ∈ {0, 1} ∀e ∈ E,

∑
k∈∂i

m(i,k) = 1 ∀i ∈ V. (4.2)

In this context the weights associated with the edges of the graph represent the
unique source of quenched disorder: averaging over all possible inputs of the problems
is equivalent to average over all possible realizations of the weights.

4.1.1 Thermodynamic limit

For low temperatures the length scale of a link belonging to the matching is fixed
by the typical distance of the nearest neighbor of a given node [VM84]. Being the
topology fully connected, this distance scales with N , and moreover in the large N

1In what follows sometimes it will be useful to talk about the weights as “lengths”, and then,
for example, an expression like “the distance of the nearest neighbor of a given node” has to be
intended as “the weight of the link with the smallest weight between those incident to the given
node”.
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limit it is expected to tend to zero. Indeed let us consider the probability distribution
of the distance of the nearest neighbor n(w):

n(w) = ρ(w) [1−
∫ w

0 d`ρ(`)]N−2∫∞
0 dwρ(w) [1−

∫ w
0 d`ρ(`)]N−2 . (4.3)

For large N only values near to 1 of the term in brackets, that correspond to
w ≈ 0, contribute to n(w). For this reason the only relevant property of the weights
distribution ρ(w) in the thermodynamic limit is its behaviour around w = 0. Let us
suppose that the distribution of the weights has the form:

ρ(w) w→0≈ wr, r > −1. (4.4)

At this point we want to deduce how the typical weight belonging to the matching
scales with N . As each vertex has N − 1 neighbors, one may expect that w? satisfies:∫ w?

0
dwρ(w) = O

( 1
N

)
, (4.5)

and then, since for large N we know that w? → 0, we can use Equation 4.4 and
Equation 4.5 to deduce that w? = O(N−

1
r+1 ). This fact implies that the energy

scales as N1− 1
r+1 . Hence, to obtain an extensive energy in the large N limit, a

possibility is to define a new inverse temperature β̂ in such a way that:

β = β̂N
1
r+1 . (4.6)

Thus, in principle, one has to study the thermodynamic limit at fixed β̂, and then
take the limit β̂ →∞ to study the properties of the ground state.

In [MP85,MP87] it has been used the replica method to study the bipartite and
non bipartite case. In particular, starting from the partition function

Z(β̂) =
∑
{me}

I

∑
k∈∂i

m(i,k) = 1

 e−β̂N 1
r+1H[{me}], (4.7)

Mézard and Parisi evaluated the average optimal cost for a distribution of the form
(4.4) in the thermodynamical limit using the replica trick:

Er = − lim
β̂→+∞
N→+∞

lim
n→0

1
β̂nN

logZn(β̂), (4.8)

under the replica symmetric assumption (section 3.2). In particular, for r = 0 they
found

E0 = π2

12 . (4.9)

The validity of the replica symmetric assumption, corroborated by numerical simu-
lations, has been proved in [MP87,PR02] by a study of the stability of the replica
symmetric saddle point. In particular they showed that the spectrum of the Hessian
matrix contains only nonnegative eigenvalues at any temperature in the fully con-
nected bipartite and non bipartite case for distributions with r = 0. The asymptotic
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result of Equation 4.9 can be obtained with the cavity method [MM09], with a
calculation that is a special case of the one that we will present in chapter 5 for a
finite connectivity case.

In 2001 Aldous [Ald01] provided a rigorous treatment of the random link matching
problem on complete bipartite graph, in the limit N →∞, and for independently
and exponentially distributed random weights, confirming in this case the prediction
of Equation 4.9.

4.1.2 Finite size corrections

In [MP87,PR02,CDMS17] some RM problems have been studied with the replica
theory, analyzing the terms beyond the leading order of the averaged energy density
expansion in powers of 1/N. The sub-leading corrections, unlike the thermodynamic
average energy density, depend on the Maclaurin expansion of the probability
distribution of the weights up to, at least, the second term [PR02].

In [PR02] for the complete non bipartite graph, in the case of weights distributed
according to the uniform law on the interval [0, 1], Parisi and Ratiéville found:

ENflat = π2

12 + 1
N

−ζ(3)
2 +

∞∑
p=0

I2p+1
2p+ 1

+ o

( 1
N

)
, (4.10)

where:
Ip =

∫ ∞
1

dC

2C

∫ p∏
i=1

dxi
xi + C

, (4.11)

and the integration with respect to x1, ..., xp has to be performed over the domain
defined by ∀i, xi ≥ 0 and xixi+1 ≤ 1, xpx1 ≤ 1. The first four terms are:

I1 = ζ(2)
4 ≈ 0.411234

I2 = ζ(3)
2 ≈ 0.601028

I3 = 3ζ(4)
16 ≈ 0.202936

I4 = 4ζ(5)− π2ζ(3)
3 ≈ 0.193102.

(4.12)

In the expressions above ζ(x) is the Riemann zeta function. In the same work, by
using the flat distribution in the bipartite case, they also found:

ENflat = π2

12 −
1

2N (1 + 2ζ(3)) + o

( 1
N

)
. (4.13)

In 1998 Parisi conjectured [Par98] an exact formula for the averaged optimal cost
of the bipartite RM as a function of the size N of the system at zero temperature,
EN (β̂ →∞), in the case of weights independent and identically distributed according
to:

ρ(w) = e−w w > 0 (case r=0). (4.14)
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The conjecture is the following:

EN = 1
2

N∑
j=1

1
j2 . (4.15)

By taking the limit N →∞ in Equation 4.15, the result of Equation 4.9 is recovered:

lim
N→∞

EN = ζ(2)
2 . (4.16)

Then the bipartite case with exponential distribution (4.14) up to the first
subleading correction is:

ENexp = π2

12 −
1

2N + o

( 1
N

)
. (4.17)

The Parisi’s conjecture given in Equation 4.15 has been independently proved by
Linusson and Wästlund [LW04] and Nair, Prabhakar, and Sharma [NPS05] in 2004.

4.1.3 Anomalous Scaling

If we interpret the term with the sum in Equation (4.11) as a contribution due to
the cycles of all possible lengths, one could expect that the next to sub-leading term
of the expansion (4.10) is a consequence of the fact that at finite N cycles of all
possible lengths cannot appear in the graph. In [LPS17] an heuristic argument to
extract the scaling with N of this correction is discussed. Firstly it is useful to
estimate the integral in (4.11) for large p, i.e., for large cycle lengths: indeed one
expects the terms corresponding to large cycle lengths to receive a correction due to
the finite size of the system. For large p:

0 ≤
∫
dC

2C

∫ p∏
i=1

dxi
xi + C

≤
∫
dC

2C

(
log 1 + C

C

)p
= 1
p

+ o

(1
p

)
, (4.18)

where the last passage follows considering that the only contribution of the term in
brackets comes from the region in which log(1 + 1/C) ≈ 1/C. Now let us observe that
a random path of length p on the complete graph KN has a probability of order p/N
of intersecting itself in the next step. Therefore, for a random path of length p, the
total probability of intersection is of order p2/N. This suggests that the maximum
length of a cycle p scales as

√
N , and then, in order to correct the sum in (4.11), one

could try to regularize the summand with a function of the form f (p/√N), where
f(0) is a constant different from zero, and limx→∞ f(x) = 0, as we cannot have
cycles of length p > N . Then the regularized version of the sum (4.11) takes the
form: ∑

p

1
p2 f

(
p√
N

)
≈ a+ b√

N
, (4.19)

where the last passage follows by approximating the sum with an integral. Therefore,
from this argument, one may expect an anomalous scaling of the sub-sub-leading
correction to the cost of the form N−3/2, that in fact is seen numerically in [LPS17].
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Matching Fractional Matching “Loopy” Fractional Matching

Figure 4.1. On the left, complete graph with a matching on it. In the center, the same
graph with a fractional matching on it: in this case, cycles are allowed. On the right, the
graph obtained allowing loops on each vertex, with a “loopy” fractional matching on it.
Thin lines correspond to edges with an occupation number equal to 1/2, while thick lines
correspond to edges with an occupation number equal to 1. Picture from [LMPS18].

4.2 The fractional and loopy fractional matching
In this section we introduce two other versions of the matching problem, the frac-
tional matching and the loopy fractional matching, and then we discuss some results
of [LMPS18] that will be useful in chapter 5.

Let us introduce firstly the random link fractional matching. Consider a com-
plete graph K2N = (V ;E), and suppose to independently associate with each edge a
non-negative random variables we, e ∈ E, drawn from a probability density ρ(w), as
in the previously discussed RM case. In the random fractional matching problem
(RFM) we search for the set of occupation numbers me, e ∈ E, that minimizes the
cost:

H[{me}] =
∑
e∈E

mewe, (4.20)

with the constraints:

me ∈ [0, 1] ∀ e ∈ E,
∑
k∈∂i

m(i,k) = 1 ∀i ∈ V. (4.21)

The difference with the matching problems discussed up to now is the domain of
definition of the occupation numbers, that in this case take values in a real interval.
It is possible to show that in optimal matchings M the occupation numbers are
such that me ∈ {0, 1/2, 1}, and therefore each optimalM contains only two kinds of
edges: those belonging to odd cycles of the graph, and those that do not share their
endpoints [W1̈0].

In a variation of the random fractional matching, called the random “loopy
fractional” matching (RLFM), an additional non-negative weight wv is associated
with each vertex v ∈ V of the graph. Each weight wv is a random variable extracted
independently from all the other weights with the same distribution. The cost now
is:

H[{me}, {mv}] =
∑
e∈E

mewe + 2
∑
v∈V

mvwv, (4.22)
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with the constraints:

me ∈ [0, 1] ∀ e ∈ E, mv ∈ [0, 1] ∀ v ∈ V,
∑
k∈∂v

m(v,k) + 2mv = 1 ∀v ∈ V. (4.23)

The RLFM then is equivalent to a RFM in a complete graph in which each node
has a self-loop that can be occupied. Wästlund proved that, in the loopy fractional
matching, in the optimal configuration me ∈ {0, 1/2, 1} ∀e, and mv ∈ {0, 1} ∀v [W1̈0].
Note that any feasible configuration for the usual matching problem is feasible for the
fractional matching problem; moreover, any feasible configuration for the fractional
matching problem is feasible for the loopy fractional matching problem. Then ∀N
and for all distributions of the weights, certainly:

ERLFM ≤ ERFM ≤ ERM. (4.24)

By considering densities ρ(w) with non-negative support and such that ρ(w) =
1− µw + o(w) for w → 0+, in [LMPS18] it is found with a replica approach:

ENη (µ) = π2

12 + 1
2N

[
(µ− 1)ζ(3) + 1− η

4 ζ(2)
]

+ o

( 1
N

)
, (4.25)

where η ∈ {−1, 1}: η = 1 is the random loopy fractional matching case, and η = −1
is the fractional matching.

At this point let us denote by ∆ERMflat/N, ∆ERFMµ /N, and ∆ERLFMµ /N, respectively, the
O (1/N) corrections of the RM, of the RFM, and of the RLFM. In order to compare
these three corrections in the case of µ = 0, we rewrite them together below:

∆ERMflat = −ζ(3)
2 +

∞∑
p=0

I2p+1
2p+ 1 = −ζ(3)

2 + ζ(2)
4 +

∞∑
k≥3,
k odd

Ik
k
,

∆ERFM0 = −ζ(3)
2 + ζ(2)

4

∆ERLFM0 = −ζ(3)
2 .

(4.26)

Note that both ∆ERFM0 and ∆ERLFM0 can be obtained starting from ∆ERMflat : the first
one by removing the series over k, and the second one by removing all the terms
but ζ(2)/4. This consideration could make one think that the third term of (4.26)
is a sum of contributions of the odd cycles, that disappears when one allows odd
cycles to belong to the matching, and that I1 = ζ(2)/4 is a vertex contribution, that
disappears when self-loops appear in the feasible solutions. Note that (4.24), which
is verified with the sign of equality in the thermodynamic limit, at the first order
becomes a chain of strict inequalities, being the disappearing terms all positive.
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Chapter 5

Matching on Random Regular
Graphs

In chapter 4 some results about matching problems on fully connected topologies have
been presented. Conversely, in this chapter we focus on a class of sparse graphs: those
belonging to the ensemble GRRG(N, z) of regular graphs. An important property of
GRRG(N, z) is the locally-tree-likeness in the limit N →∞. This property motivates
the idea to use iterative approaches, like the cavity method (subsection 2.4.4), which
are typical of statistical mechanics on tree-like structures [MP01]. For this reason,
random regular graphs are usually called Bethe lattices.

We study some aspects of four different kinds of matching problems, already
defined in chapter 1 and chapter 4: the standard matching problem, the fractional
matching, the loopy fractional matching, and the assignment problem. The main
aim is to study the optimal solutions in the presence of two sources of quenched
randomness:

• a topological disorder, as the graphs are drawn from the ensemble of random
regular graphs GRRG(N, z);

• a link disorder, as with each edge is associated a random weight. The weights
are independent and identically distributed, analogously to the cases discussed
in chapter 4.

Hence a realization of the problem is defined by a realization of the graph, and by a
realization of the weights associated with its edges.

It is crucial to notice that the presence of cycles should play a determining role:
indeed, as it happens for spin glasses, they contribute to frustrate the system ( see,
for example, Figure 5.1).

On RRGs we expect that the cycles do not produce effects that contribute to the
thermodynamic limit, due to the fact that the presence of cycles is asymptotically
suppressed. We will test this hypothesis through a comparison between numerical
simulations and some predictions obtained with the cavity method at the replica
symmetric level (Section 2.4.4). Conversely, as the density of the number of cycles
of fixed length scales as 1/N, one may expect that the first finite size correction
to the thermodynamic cost density receives a contribution due the cycles. This
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Figure 5.1. The triangle, as all the odd-cycles, produces frustration introducing non-local
constraints in the system: the edges connecting the nodes of the triangle to the external
nodes cannot all be excluded at the same time from a perfect matching.

idea certainly is also motivated by the observations made in chapter 4 for the fully
connected case.

As we will show in this chapter, with the cavity method it is possible to estimate
the costs of the cycles of a given length. After comparing these estimates with
numerical simulations, performed with a method that takes inspiration from the
edge-swapping algorithm of section 1.1.2, the idea is to try to gain a quantitative
understanding of the role of the cycles in finite size effects on a sparse topology.

The chapter is organized as follows. In Sections 5.1 the definition of standard
matching problem on RRGs is presented. In Sections 5.2 and 5.3 the cavity arguments
for the computation of the asymptotic energy density and the cost of the cycles are
discussed. Section 5.4 deals with some numerical simulations.

5.1 Problem definition
Let us start considering an instance G of GRRG(N, z). The first step for the
formulation of the matching problem on G in terms of a statistical mechanics
problem is to define the energy of the system:

H =
∑
g∈E

mgwg. (5.1)

Equation 5.1 is equivalent to the standard cost of the matching (Equation 1.30): mg

is an occupation number associated with each edge g ∈ E, and it is equal to 1 or 0
depending if, respectively, g belongs or not to the matching; the wg’s are quenched
positive weights associated with each edge of the graph, drawn independently from
the same probability distribution ρ(w), that we will assume to have the form:

ρ(w) = 1
z
e−

w
z . (5.2)

A configurations of the system is defined by a set of occupation numbers {mg}g∈E .
We are interested in the configurations that represent perfect matchings. However,
since for finite N a perfect matching is not guaranteed to exist for all regular graphs
(chapter 1), before calculating the thermodynamic limit, formally one has to relax
the condition: ∑

k∈∂i
m(k,i) = 1, ∀ i ∈ V, (5.3)
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Figure 5.2. On the left it is given an example of regular graph with N = 10 nodes and
valence k = 3. On the right it is reported the factor graph representing a model with
probability distribution of the form (5.4), and defined on the graph on the left.

i.e., to relax the request that all the nodes of the graph have to be matched. This
relaxation can be controlled introducing a Lagrange parameter γ as follows. Let us
define a probability associated with each configuration of the system as:

ψ(m) = 1
Z
∏
k∈V

I

∑
g∈∂k

mg ≤ 1

 exp

−βγ
1−

∑
g∈∂k

mg

 ∏
g∈E

exp (−βmgwg) .

(5.4)
For a finite value of the coupling constant γ, matchings that are not perfect are
energetically discouraged, but have non-zero measure. In the limit γ →∞ the hard
constraint of perfect matching is recovered. In Equation 5.4 it has been introduced
an artificial inverse temperature β, that at the end of the computations will be sent
to infinity to study the ground state properties of the system. Indeed in the double
limit β, γ →∞ it is easy to see that Equation 5.4 is concentrated on the minimum
cost perfect matching.

It is possible to give a graphical representation of the probability distribution
(5.4) in terms of factor graphs. Given the graph on which one wants to solve the
matching problem, in order to construct the associated factor graph it is sufficient
to substitute each node of the starting graph with a function node, to associate with
each edge a variable node, and then to associate uniquely with each variable node an
additional function node. The meaning of each node can be easily understood from
the example in Figure 5.2: the variable nodes associated with each edge represent the
occupation numbers mg, the function nodes uniquely associated with each variable
node, that we will call soft nodes, verify the following correspondence:

g ≡ e−βmgwg ,

and the function nodes corresponding to the nodes of the starting graph, that we
will call hard nodes, verify the correspondence:

k ≡ I

∑
g∈∂k

mg ≤ 1

 exp

−βγ
1−

∑
g∈∂k

mg

 .
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5.2 The cavity equation and the ground state energy
In this section we derive the density evolution equation for the standard matching,
and an expression for the average optimal cost per node E forN →∞. As anticipated,
we exploit a fundamental property of the random regular graph ensemble in the
large graph limit, i.e. the fact that it is locally tree-like, using a cavity approach to
the problem. Let us start from the fixed instance case. The first step is to write the
equations for the cavity marginals (2.47) of a generic variable node me.

As each variable node e is associated with exactly two hard nodes, we use the
following notation: if k is an hard node adjacent to a variable node e, the other hard
node linked to e will be denoted by ke. The messages from variable nodes to hard
function nodes have the form:

νe→k ∝ exp(−βmewe)µke→e, (5.5)

instead the messages from hard1 function nodes to variable nodes are:

µk→e ∝
∑
m∂k\e

I

 ∑
g∈∂k\e

mg +me ≤ 1

 exp

−βγ
1−

∑
g∈∂k

mg

 ∏
g∈∂k\e

νg→k,

(5.6)
where, for brevity, it has been omitted the argument of the messages:

µk→e ≡ µk→e(me)
νe→k ≡ νe→k(me).

(5.7)

By substituting Equation 5.5 into Equation 5.6 one obtains the dependence of one
function-to-variable message of a variable e from the function-to-variable messages
of the variable nodes neighboring e:

µk→e ∝
∑
m∂k\e

θe exp

−βγ
1−

∑
g∈∂k

mg

 ∏
g∈∂k\e

exp(−βmgwg)µkg→g, (5.8)

where, in order to lighten the notation, we called θe ≡ I
[∑

g∈∂k\emg +me ≤ 1
]
.

It is important to note that in this discussion the thermodynamic limit is implicit
in the use of the cavity equations, since only in this limit the tree-like approximation
is exact.

As in this problem the alphabet of the variables is binary, me ∈ {0, 1}, each
cavity marginal can be parameterized by a single number. Let us represent the
function-to-variable cavity marginal as follows:

µk→e ∝ exp (βhk→eme) , (5.9)

where hk→e is the parameter that uniquely defines µk→e; it can be understood as
a “cavity field” acting on e. From Equation 5.9 it follows that the Bethe estimate

1Observe that there would be another equation for the messages sent from soft function nodes
to variable nodes. However it can be omitted, since each soft node is connected only to one variable
node. This fact implies that if s is a soft function node, the function-to-variable message is known,
µs→e ∝ exp (−βmewe), then, in order to solve the fixed instance problem, i.e., to compute the
marginals (2.48), it is sufficient to focus on Equation 5.5 and Equation 5.6.
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of the marginal probability distribution ψ(me) of a variable node me, expressed in
terms of the cavity fields acting on it, takes the form:

ψ(me) ∝ exp
[
β
(
hk→e + hke→e − we

)
me

]
. (5.10)

Hence, by Equation 5.10, when hk→e + hke→e > we, me is more likely to belong to
the matching, vice versa when hk→e + hke→e < we, me is more likely to be excluded
from the matching.

Now let us rewrite Equation 5.8 in terms of the cavity fields. The starting point
is the relation:

hk→e = − 1
β

log µk→e(0)
µk→e(1) . (5.11)

One can use Equation 5.8 to compute µk→e(1) and µk→e(0), and then use Equa-
tion 5.11 to obtain a recursive relations for the fields. It is found that:

µk→e(1) ∝
∏

g∈∂k\e
µkg→g(0), (5.12)

and that

µk→e(0) ∝
exp(−βγ)

∏
g∈∂k\e

µkg→g(0) +
∑

f∈∂k\e
exp(−βwf )µkf→f (1)

∏
g∈∂k\e
g 6=f

µkg→g(0), (5.13)

from which Equation 5.11 takes the form:

hk→e = − 1
β

log

exp(−βγ) +
∑

f∈∂k\e
exp

[
−βwf + βhkf→f

] . (5.14)

By taking the double limit γ →∞ and β →∞:

hk→e =− lim
β→0

lim
γ→∞

1
β

log

exp(−βγ) +
∑

f∈∂k\e
exp

[
−βwf + βhkf→f

]
=− lim

β→0

1
β

log

 ∑
f∈∂k\e

exp
[
−βwf + βhkf→f

] = min
f∈∂k\e

(
wf − hkf→f

)
.

(5.15)

Equation 5.15 relates the cavity field at zero temperature acting on a generic variable
node e to those acting on the variable nodes neighboring e, and, despite being more
compact, it is equivalent to Equation 5.8. Up to now, the discussion regarded a
given instance of the matching, i.e., an infinite regular tree with a given realization
of the weights on the edges. Now we want to focus on the random instance case. As
in the thermodynamic limit we are assuming to work on a z-regular tree, it can be
used Theorem 2.5, which implies:

h(t+1) d= min
i

(
wi − h(t)

i

)
, with 1 ≤ i ≤ z − 1. (5.16)
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Equation 5.16 is the density evolution for the matching case on a z-regular tree. In
Equation 5.16 the cavity field, h, becomes a random variable. The fields h(t)

i , with
1 ≤ i ≤ z − 1, are independent random copies of h(t), and wi, with 1 ≤ i ≤ z − 1,
are independent random weights distributed according to ρ(w). Equation 5.16 is
equivalent to the recursive equation:

Pt+1
(
h(t+1)

)
=
∫ z−1∏

`=1
dw`ρ(w`)

∫ z−1∏
`=1

dh`Pt
(
h

(t)
`

)
δ

(
h(t+1) −min

i

(
wi − h(t)

i

))
(5.17)

where 1 ≤ i ≤ z − 1, δ(·) is the Dirac delta function, and Pt is the probability
distribution of h(t). Now suppose that for t→∞, P(t)(h) converges to a fixed point
P(h). Then the Bethe estimate of the average energy density E is simply found by
keeping in mind the parameterization of Equation 5.10:

E = z

2

∫ ∞
0

dwρ(w)w
∫
dh1dh2P(h1)P(h2)I [h1 + h2 − w ≥ 0] . (5.18)

Note that, without the factor z/2, the integral in Equation 5.18 gives the total energy
per number of edges of the graph.

Population dynamics

We have not been able to find an analytical solution of Equation 5.17 in the limit
t→∞. We solved therefore the equation sampling P(h) with a numerical method,
in order to compute the energy density E . The idea is to approximate the probability
distribution P(h) through a sample of M independent identical distributed copies of
h. As M becomes large, the empirical distribution of such sample should converge to
the actual distribution of h [MM09]. We shall call the sample {hi} ≡ {h1, h2, ..., hM}
a population; from this the name population dynamics. The algorithm that samples
P(h) and estimates E is described by the pseudocode (2). As inputs, it requires
the population size M , and the maximum number of iterations T . After updating
the cavity fields, the cost density is found by the following procedure. We draw z
weights w1, ..., wz according to the exponential distribution, z fields h1, ..., hz from
the population, and we consider as if they were the weights and fields of z incident
edges, as represented for the case of z = 3 in Figure 5.3. Now if we denote by m the
index:

m = arg min1≤i≤z(wi − hi), (5.19)

then it is easy to see that wm samples the distribution of the cost of z edges. As
the number N of nodes is related to the number of edges through |E| = zN

2 , the
average over different extractions of wm divided by two gives an estimate of the
energy density E . For M = 107 and T = 500 we found the energy densities written
in Table 5.1. In Figure 5.4 the cavity estimates for the average energy densities E
are reported. The data trend turns to be good-fitted by a function of the form:

f(z) = a+ b

z2 + c

z4 , (5.20)
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h1

h2

h3

w1

w2

w3

←−−→

←
−

Figure 5.3. The weights wi are written near by the corresponding soft node. The fields
hi are those that define the function-to-variable cavity marginals outgoing from the
external function nodes.

z E ∆E

3 0.83789 0.00002
4 0.82894 0.00002
5 0.82607 0.00001
6 0.82474 0.00001
7 0.82407 0.00002
8 0.82365 0.00002
9 0.82336 0.00001

10 0.82314 0.00002
20 0.82259 0.00001

Table 5.1. Cavity estimates of the average energy densities as a function of the degree z of
the RRG ensemble, in the case of exponential distribution exp(−w/z)/z.

with:

a = 0.82241± 0.00002
b = 0.069± 0.004
c = 0.6291± 0.1736.

(5.21)

As expected from the results of chapter 4, a is compatible with π2/12, the thermody-
namic cost density on a fully connected graph.

5.3 Cost of the cycles
We assume that on GRRG(N, z) the average cost Γ` of a cycle of length ` for N →∞
is equal to:

Γ` = lim
β→∞

〈
− 1
β

log Z`
Z0

〉
ρ

, (5.22)
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Cavity estimates
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E ∞

z−2

Figure 5.4. Cavity estimates of the average energy densities E in the thermodynamic limit
for z = 7, 8, 9, 10, 20. The fitting function has the form reported in Equation 5.20.

Algorithm 2 Population Dynamics (size N , iterations T )

Initialize {h(0)
i };

for t = 1, ..., T do
E ← 0;
for i=1,...,M do

Draw j(1), ..., j(z − 1) uniformly in {1, ...,M};
Draw w(1), ..., w(z − 1) with a distribution ρ(w);
h

(t)
i ← mink(w(k)− h(t−1)

j(k) ), 1 ≤ k ≤ z − 1;

Draw j(1), ..., j(z) uniformly in {1, ...,M};
Draw w(1), ..., w(z) with a distribution ρ(w);
min← mink(w(k)− h(t−1)

j(k) ), 1 ≤ k ≤ z;
index← k?, where w(k?)− h(k?) == min;
E ← E + w(index);

end for
E ← 0.5 E/M ;
print(E);

end for
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where the angle brackets denote the average over the weights, Z0 is the partition
function of the matching on an infinite z-regular tree, and Z` is the partition function
of the matching on an infinite z-regular graph, that differs from the tree just for the
presence of a single cycle of length `. Let us observe that it is possible to turn the
regular tree into the other graph by an edge swapping, as represented below in the
case of z = 3 and ` = 3:

0 1 2 3 4
=⇒

1 3

+
0 4

(5.23)

For general ` and z the procedure is the same: it is possible to realize the trans-
formation by choosing a path of length ` + 1 on the tree, and by performing the
edge-swapping:

(0, 1), (`, `+ 1)⇒ (0, `+ 1), (1, `), (5.24)

where (i, j) is the edge connecting i to j.
Now suppose to choose a path of length `+ 1 on the tree. Moreover, in order to

lighten the factor graph description, let us denote by L the set of variable nodes, and
by L̂ the set of function nodes belonging to such path. First of all we focus on the case
of a fixed instance of the weights. In order to do that, we want to write Z0 in terms of
the cavity marginals of the variables belonging to ∂L̂\L, and Z` in terms of the same
cavity marginals, but after the edge swapping represented in 5.23. In the following
we write, for generic variable and function nodes, θa(m∂a) ≡ I

[∑
j∈∂amj − 1

]
. The

partition function of the tree, Z0, is:

Z0 =
∑
m
∂L̂

[∏
i∈L

e−βwimi

]∏
a∈L̂

θa(m∂a)
∏

k∈∂a\L
νk→a(mk)

 . (5.25)

Let us denote by L′ the set of variable nodes belonging to the cycle obtained after
the edge-swapping, and by L̂′ the set of function nodes belonging the same cycle. We
call m0 the variable node associated with the isolated edge. The partition function
Z` has the form:

Z` =
∑
m
∂L̂

C
(
m
∂L̂′

)
D (m∂0∪∂`+1) , (5.26)

where C is the cycle contribution:

C =

∏
i∈L′

e−βwimi

 ∏
a∈L̂′

θa(m∂a)
∏

k∈∂a\L′
νk→a(mk)

 , (5.27)

and D is the isolated edge contribution,

D = e−βw0m0
∏
j∈

∂0\`+1

νj→0(mj)θ0(m∂0)
∏
j∈

∂`+1\0

νj→`+1(mj)θ`+1(m∂`+1). (5.28)



5.3 Cost of the cycles 53

By using Equation 5.5 and Equation 5.11 of section 5.2, and dividing Z` and Z0 by∏
a∈L̂

∏
i∈∂a\L µi→a(0), one obtains:

Z`
Z0

=

∑
m
∂L̂
C̃
(
m
∂L̂′

)
D̃ (m∂0∪∂`+1)∑

m
∂L̂

[
∏
i∈L e

−βwimi ]
[∏

a∈L̂ θa
∏
k∈∂a\L exp

(
−β

∑
j∈∂a\Lmjφj→a

)] , (5.29)

where:

C̃ =

∏
i∈L′

e−βwimi

 ∏
a∈L̂′

θa exp

−β ∑
j∈∂a\L′

mjφj→0

 , (5.30)

D̃ = θ0θ`+1 exp

−β ∑
j∈∂0

mjφj→0 − β
∑

j∈∂`+1
mjφj→`+1 − βm0w0

 , (5.31)

and φi→j = wij − hi→(i,j). Note that, given a variable me belonging to ∂L̂ \ L, we
considered equal the cavity marginals of me in the case of the tree and of the tree
with a cycle. This follows from the fact that the cavity graph obtained removing
the function node a, a ∈ L̂ ∩ ∂e, is the same in both cases, if we consider the cycle
far from the isolated edge.

By substituting Equation 5.29 into Equation 5.22, and taking the limit β →∞,
it follows that, at a given instance of the weights:

lim
β→∞

− 1
β

log Z`
Z0

= EC − ET , (5.32)

The first addend is the contribution of the graph with the cycle:

EC = min
c0,cL′

[∑̀
a=1

cawa +
∑̀
a=1

I(ca + cn(a) = 0)γa + c0w0 + (1− c0)(φ0 + φ`+1)
]
,

(5.33)
where c0 ∈ {0, 1}, and cL′ = (c1, c2, ..., c`) ∈ {0, 1}` is a set of occupation numbers
that represents all possible matchings, perfect and not, of a graph consisting of only
one cycle of length `. The function n(a) is such that n(a) = a+ 1, if 1 ≤ a ≤ `− 1,
and n(a) = 1, if a = `. The other term, ET , is the contribution of the tree:

ET = min
cL

[∑̀
a=0

cawa +
∑̀
a=1

I(ca−1 + ca = 0)γa + (1− c0)φ0 + (1− c`)φ`+1

]
, (5.34)

where cL′ = (c0, c1, ..., c`) ∈ {0, 1}`+1 is a set of occupation numbers that represents
all possible matchings, perfect and not, of a graph consisting of only one path of
length `+ 1. In Equation 5.33 and Equation 5.34, we denoted by γa the smallest
of the z − 2 differences wa − hj→a, with j ∈ ∂a \ L′; and we denoted by φi, where
i = 0, `+ 1, the smallest of the z − 1 fields wj − hi→j , with j ∈ ∂i \ L.

It is possible to switch to the random instance case by considering wa, γa, φ0, φ`+1
as random variables. The weights are independently distributed according to ρ(w),
and the two cavity fields φ0, φ`+1 are distributed according to the probability
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distribution that satisfy Equation 5.16 in the limit t→∞; the law of the fields γa
satisfies the following relation:

γ(t+1) d= min
i

(
wi − h(t)

i

)
, with 1 ≤ i ≤ z − 2, (5.35)

taken in the limit t→∞. In Equation 5.35 the γi’s are z − 2 independent drawings
from the same probability distribution.

In order to estimate Γ` = 〈EC−EL〉ρ, we used population dynamics, essentially by
calling inside the loop in i of the pseudocode (2) the two functions EnergyChain(`),
and EnergyTree(`). These two function, respectively, allow to estimate 〈EC〉ρ and
〈EL〉ρ, and are schematically described in the pseudocode (3).

For a population of M = 107, a number T = 103 iterations, and ` = 3, 4, 5, we
obtained the data given in Table 5.2, reported in Section 5.4.2.

Algorithm 3 Cycles costs (`)
function EnergyChain(`)

φ0 ← Get_h();
φ` ← Get_h();
Draw w(0), ..., w(`) with a distribution ρ(w);
for i=1,...,` do

γ(i)← Get_g();
end for
return the minimum EC over all the configurations of c0, cL′ of Equation 5.33;

end function

function EnergyTree(`)
φ0 ← Get_h();
φ` ← Get_h();
Draw w(0), ..., w(`) with a distribution ρ(w);
for i=1,...,` do

γ(i)← Get_g();
end for
return the minimum ET over all the configurations of cL of Equation 5.34;

end function

function Get_h()
Draw j(1), ..., j(z − 1) uniformly in {1, ...,M};
Draw w(0), ..., w(z − 1) with a distribution ρ(w);
return mink(w(k)− h(t−1)

j(k) ), 1 ≤ k ≤ z − 1;
end function

function Get_g()
Draw j(1), ..., j(z − 2); uniformly in {1, ...,M};
Draw w(0), ..., w(z − 2) with a distribution ρ(w);
return mink(w(k)− h(t−1)

j(k) ), 1 ≤ k ≤ z − 2;
end function
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5.4 Numerical Simulations
The numerical simulations can be conceptually divided in two parts. Those of the
first part, that we will compare with the cavity predictions, concern the standard
matching problem. Those of the second part, for which we have no cavity predictions,
concern the fractional matching, the loopy fractional matching, and the assignment
problem.

We make use of the solver implemented in the Lemon Graph Library [DJK11].
It is based on Edmond’s blossom algorithm [Edm09], that has O (|V ||E| log |V |)
computational time complexity on a generic graph G = (V ;E).

5.4.1 Standard Matching

In this section we discuss some numerical results about the standard matching
problem on random regular graphs with valences z = 3, 4.

To improve the uncertainties on the estimates of the energy, both for z = 3 and
z = 4, it has been used the following expedient. Suppose we want to estimate the
average, denoted with angle brackets, of a given quantity A. By linearity of the
expected value, given another quantity B, it follows that:

〈A〉 = 〈A−B〉+ 〈B〉. (5.36)

Let us compute the variance of A−B:

σ2
A−B =

〈
(A−B − 〈A−B〉)2

〉
= σ2

A + σ2
B − 2 〈(A− 〈A〉) (B − 〈B〉)〉 , (5.37)

where σ2
· denotes the variance of the distribution of the random variable specified in

the subscript. From Equation 5.37 it follows that if A and B are positively correlated
it is possible that σ2

A−B < σ2
A. Now let us suppose that we know exactly 〈B〉. In

this case one can measure the quantity A−B, and add to it at the end the value of
〈B〉, obtaining a less fluctuating estimate of 〈A〉, if A and B are properly correlated.
In the matching case we have chosen as B a heuristic cost: for a given instance, for
each node we select the edge with the lowest weight incident to it and we define our
heuristic cost as the sum of such weights. The expected value of the heuristic cost
in case of exponential distribution and regular graphs of valence z, is simply 1. In
this case this technique allowed to reduce the uncertainties up to a factor ≈ 1.2.

Valence z = 3

Let us start from the case z = 3. In Figure 5.5 we present the average optimal cost
densities for 16 ≤ N ≤ 120 in the case of exponential distribution of the weights
(5.2). Each point corresponds to the average of the optimal cost of 106 independent
realizations of the system. Each realization has been constructed by generating a
regular graph with the configurational model (Section 1.1.2), and then by assigning
to each edge of the graph a random weight.

In the fully connected case, as discussed in chapter 4, it is observed an anomalous
finite size correction proportional to N−3/2. To evaluate the presence of such an
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Monopartite, z = 3
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Figure 5.5. Average cost density E as a function of 1/N in the case of RRGs with valence
z = 3 and link weights exponentially distributed (5.2). The solid line corresponds to the
fit obtained using (5.38).

anomalous correction, we try to fit the data in Figure 5.5 with a function of the
form:

E = E3 + c1
N

+ c̃

N
3
2

+ c2
N2 , (5.38)

where it is found that:
E3 = 0.8378± 0.0001
c1 = 1.11± 0.03
c̃ = −4.8± 0.3
c2 = 1.5± 0.9

(5.39)

The asymptotic cost density, E3, is in good agreement with the cavity prediction Ê3
(Table 5.1):

Ê3 = 0.83789± 0.00002. (5.40)
To improve the estimates of c1, c̃, c2 we can try to fit N(E3 − Ê3) as a function of

1/
√
N, as it is shown in Figure 5.6.
For a function of the form:

f(N) = c1 + c̃√
N

+ c2
N

(5.41)

the best fit is determined by the parameters:

c1 = 1.096± 0.006
c̃ = −4.63± 0.07
c2 = 1.4± 0.2

(5.42)
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Monopartite, z = 3
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Figure 5.6. Behavior of N
(
E − Ê3

)
as a function of 1/

√
N . The solid line is a quadratic

fit in 1/
√
N .

The fact that for large N the choice of the axis scaling linearizes the data, leads
to conclude that even in the finite connectivity case there is a corrective term
proportional to N−3/2.

Denoting by E(G) the optimal cost per node corresponding to the instance G, for
z = 3 we measured a quantity that will be useful in subsection 5.4.2: the connected
correlation function NE(G)N`(G)c ≡ NE(G)N`−NEN`, where NE = NE(G) is the
average total energy and 〈N`(G)〉 is the average number of polygons of length `, for
some values of the number of nodes N . In Figure 5.7 are represented the measures
for ` = 3, 4 as functions of 1/N, together with fitting functions of the form:

f`(N) = a` + b`√
N
, (5.43)

where:

a3 = 0.136± 0.001 b3 = −0.8± 0.1
a4 = 0.0001± 0.0007 b4 = −0.86± 0.07.

(5.44)

Both for ` = 3 and ` = 4 the estimates are noisy, and require more statistics.

Valence z = 4

In Figure 5.8 the average optimal cost densities for 30 ≤ N ≤ 120 are reported in
the case of exponential distribution of the weights. Each point corresponds to the
average of the optimal cost of 106 independent realizations of the system. Each
realization has been constructed as in the case of z = 3, previously discussed.
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Correlations, z = 3
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Figure 5.7. From the bottom to the top ` = 4, 3. The form of the fitting function is that
of Equation 5.43.

Monopartite, z = 4
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Figure 5.8. Average cost density E as a function of 1/N in the case of RRGs with valence
z = 4 and link weights exponentially distributed (5.2). The solid line corresponds to the
fit obtained using (5.45).
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Monopartite, z = 4
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By fitting the data with:

E = E4 + c1
N

+ c̃

N
3
2

+ c2
N2 (5.45)

it is found:

E4 = 0.8291± 0.0005
c1 = 0.7± 0.2
c̃ = −3± 2
c2 = 0.6± 0.5

(5.46)

One more time there is good agreement between the numerical estimate of the
asymptotic cost density, E4, and the cavity calculation Ê4 (Table 5.1):

Ê4 = 0.82894± 0.00002. (5.47)

The analogous of Figure 5.6 in the case of z = 4 is given in Figure 5.9.
By fitting with:

f(N) = c1 + c̃√
N

+ c2
N

(5.48)

it follows:

c1 = 0.71± 0.01
c̃ = −3.2± 0.2
c2 = 0.7± 0.5

(5.49)
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Also in this case, as can be seen in Figure 5.9, the data trend is linearized for large
N by the scaling of the x-axis.

The observation of an N−3/2-scaling correction at finite z, by virtue of the in-
terpretation given in subsection 4.1.3, suggests the possibility that the 1/N-correction
receives a contribution due to the graph cycles of all lengths.

5.4.2 Cycles

In this section we present and discuss the measures of the average costs of triangles,
squares, and pentagons on random regular graphs with valences z = 3, 4. The costs of
these polygons have been computed by the method discussed below, that is inspired
by the edge-swapping algorithm of section 1.1.2. To be more precise, suppose to
generate a sequence of regular graphs {Gt}Lt=0 in which if t is not a multiple of 50,
Gt+1 is obtained from Gt by a single swap of two edges; otherwise Gt+1 is produced
from Gt by 100|E| edge swaps. We call blocks the 50-graph subsequences composed
by graphs that are connected by a single edge swap. For each t, an average energy
density E (Gt) has been computed, by redrawing 103 times the weights associated
with the edges of Gt according to the distribution (5.2).

We denote by N` (Gt) the number of cycles of Gt that have length `. For each t,
N` (Gt) has been computed in the case of ` = 3, 4, 5, implementing the formula in
Equation 1.5 (chapter 1). At this point consider a given block B; suppose that {k},
with Gtk , Gtk+1 ∈ B, is the sequence of indexes that identifies all the transitions
occurring in B of the form:

N` (Gtk+1)−N` (Gtk) = 1. (5.50)

Suppose that T `B is the number of transitions of N` occurring in B. We computed,
for each block B, the quantity γ`B:

γ`B = 1
T `B

T `B∑
k=1
{E (Gtk+1)− E (Gtk)} , (5.51)

and estimated the cost of a polygon of length ` by averaging γ`B over all the blocks
contained in the sequence.

Each point of the figures 5.10, 5.11, 5.12, 5.13, 5.14, 5.15 is the average of over
≈ 106 − 107 different blocks B of γ`B, with ` = 3, 4, 5. The first graph of the chain
has been drawn uniformly with the configurational model.

In 5.10, 5.11, 5.12, 5.13, 5.14, 5.15 the costs of the cycles per unit length are
represented, as a function of 1/N. We fit the data with a function of the form:

g` = Γ`
`

+ c1
N

+ c2
N2 + c3

N3 , ` = 3, 4, 5. (5.52)

In Table 5.2 all the fit parameters are given, together with the cavity estimates of
the asymptotic costs per unit length of the polygons.

Note that the costs of the odd-cycles are all positive: this is a consequence of the
fact that the presence of odd-cycles produces frustration, and therefore it raises the
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Triangles, z = 3
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Figure 5.10. Average cost per length unit of a triangle on random regular graphs with
nodes having degree z = 3. The fitting function has the form Equation 5.52.

Square, z = 3
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Figure 5.11. Each point represent the average cost per length unit of a square on random
regular graphs with nodes having degree z = 3. The fitting function has the form
Equation 5.52.
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Pentagons, z = 3
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Figure 5.12. Each point represent the average cost per length unit of a pentagon on
random regular graphs with nodes having degree z = 3. The fitting function has the
form Equation 5.52.

Triangles, z = 4
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Figure 5.13. Each point represent the average cost per length unit of a triangle on random
regular graphs with nodes having degree z = 4. The fitting function has the form
Equation 5.52.
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Square, z = 4
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Figure 5.14. Each point represent the average cost per length unit of a square on random
regular graphs with nodes having degree z = 4. The fitting function has the form
Equation 5.52.

Pentagons, z = 4
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Figure 5.15. Each point represent the average cost per length unit of a pentagon on
random regular graphs with nodes having degree z = 4. The fitting function has the
form Equation 5.52.
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z = 3 z = 4
Simulations Cavity Simulations Cavity

` = 3
Γ3/3 0.1019± 0.0002 0.10167± 0.00001 0.02013± 0.00009 0.020118± 0.000005
c1 −0.24± 0.01 − 0.040± 0.008 −
c2 −4.8± 0.02 − −1.2± 0.2 −

` = 4
Γ4/4 −0.0010± 0.0001 −0.001144± 0.000005 −0.00009± 0.00001 −0.000098± 0.000004
c1 0.18± 0.01 − 0.010± 0.002 −
c2 −5.6± 0.5 − 0.72± 0.05 −
c3 26± 0.5 − − −

` = 5
Γ5/5 0.01126± 0.00006 0.011202± 0.000006 0.00097± 0.00003 0.000965± 0.000004
c1 0.066± 0.005 − −0.013± 0.003 −
c2 −2.3± 0.1 − −0.33± 0.07 −

Table 5.2. Summary table of the fit parameters and of the cavity predictions obtained
with population dynamics for triangles, square and pentagons, and z = 3, 4.

cost on average. The numerical estimates of the costs of the polygons are in good
agreement with the cavity predictions.

At this point we make the following conjecture about the form of the expansion
of the average cost E in powers of 1/N:

E = E∞ + 1
N

(
C +

∞∑
`=3

(z − 1)`

2` Γ`

)
+ o

( 1
N

)
, (5.53)

where E∞ is the asymptotic cost, C is a constant that is supposed not to depend on
the presence of cycles of length ` ≥ 3, and (z−1)`

2` ≡ 〈N`〉 is the average number of
cycles of length ` on RRGs for N →∞. If the conjecture is true we expect that the
connected correlations defined in Section 5.4.1 verify:

NE(G)N`(G)c
N →∞−−−−−→ Γ`N 2

` (G)c, (5.54)

Since for large N , N` has a Poisson distribution (chapter 1), and then N 2
` (G)c =

(z−1)`
2` , we expect that:

NE(G)N`(G)c
N →∞−−−−−→ Γ`

(z − 1)`

2` . (5.55)

This prevision is verified for ` = 3, indeed, from the measure of the connected
correlation functions, and Equation 5.44 it follows that:

NE(G)N3(G)c
3 ≡ a3 = 0.136± 0.001 is compatible with 4

3
Γ3
3 = 0.1359± 0.0003

(5.56)

5.4.3 Fractional Matching

In this section we discuss some numerical results about the fractional matching
problem on random regular graphs with valence z = 3. For the fractional matching
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case a consideration allows to argue that the asymptotic (N → ∞) cost density
should be equal to the corresponding cost density of the matching, for every fixed
valence z. The fundamental ingredient is that we are working on a locally tree-like
ensemble of graphs in the limit N →∞. The argument is that on a tree with finite
but arbitrarily large size, the space of feasible solutions of the matching problem is
always equal to that of the fractional matching. Indeed the only edges that can be
added to the matching with a non-integer occupation number are those that belong
to a cycle, and on the trees there are no cycles.

In Figure 5.16 the average optimal cost densities for 30 ≤ N ≤ 120 are reported,
in the case of exponential distribution of the weights (5.2). Each point corresponds
to the average of the optimal cost of 106 independent realizations of the system.
Each realization has been constructed by generating a regular graph with the
configurational model (1.1.2), and then by assigning to each edge a random weight,
exactly as in the matching case.

As discussed in chapter 4, in the fully connected case the difference between the
optimal cost density in the matching and in the fractional matching cases is equal,
up to o(1/N), to the term that is thought to be due to the odd-cycles of length ` ≥ 3:

∑
k≥3,
k odd

Ik
k
, (5.57)

where the Ik’s are defined in chapter 4. If this fact still holds at z finite, one may try
to see if the 1/N-correction to the asymptotic cost density is equal to the term C/N of
Equation 5.53. Moreover, if there are no terms that depend on cycles contributing
to the 1/N correction of the fractional, one may expect that there are no terms
proportional to N−

3
2 , as a consequence of the interpretation given in Section 4.1.3.

This fact motivated to choose to fit the data represented in Figure 5.16 with a
function of the form:

E = EF + c1
N

+ c2
N2 + c3

N3 . (5.58)

One obtains the following parameters for the best fit:

EF = 0.837905± 0.000009
c1 = −0.032± 0.002
c2 = −5.6± 0.1
c3 = 24± 2

(5.59)

As previously argued, the asymptotic cost density is compatible with that of the
matching problem in the case z = 3:

Ê3 = 0.83789± 0.00002 (5.60)

At this point, in order to test the hypothesis about the anomalous scaling above
discussed, a possibility is to study the behavior of N(E − EF ) as a function of 1/N.
This behavior is reported in Figure 5.17.
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Fractional matching, z=3
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Figure 5.16. Average optimal cost density in the random link fractional matching problem
on random regular graphs with connectivity z = 3, as a function of 1/N.

Fractional matching, z=3
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Figure 5.17. Behavior of N (E − EF ) as a function of 1/N. The solid line is a quadratic fit
in 1/N.

The fitting function has the form:

f(N) = c1 + c2
N

+ c3
N2 , (5.61)
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z Ez ±∆Ez

20 0.78310± 0.00006
40 0.8026± 0.0002
60 0.80899± 0.00009
70 0.8109± 0.0002
80 0.8123± 0.0001
90 0.8133± 0.0001

100 0.8146± 0.0001
Table 5.3. Energy densities Ez estimated with a fitting function of the form Equation 5.64

for different values of the valence z.

with:

c1 = −0.0308± 0.0003
c2 = −5.65± 0.03
c3 = 26± 1

(5.62)

In Figure 5.17 the fact that the data points are linearized for large N by the
chosen scaling of the axes is an evidence of the absence of an anomalous correction
proportional to N−3/2. At this point we can discuss the idea that c1 is equal to C, the
first 1/N-term of Equation 5.53. To avoid ambiguities we will denote by cf ≡ c1, the
estimate of the 1/N-correction of the fractional matching, and by cs = 1.096± 0.006
the estimate of the 1/N-correction of the standard matching (Section 5.4.1). If we
suppose that cf is a measure of C, then, we expect that:

cf +
∞∑
`=3

(z − 1)`

2` Γ` has to be compatible with cs. (5.63)

For z = 3, the left side of Equation 5.63, truncated at ` = 5, is equal to left=
0.549± 0.002, that is not compatible with cs = 1.096± 0.006. This can be due to
different reasons. First of all we must take into account the fact that we computed
only the first three terms of the series; in order to test Equation 5.63 one has
in principle to study the behavior of the contributions of higher length polygons.
Moreover, regardless of the cancellation of the cycle-term, it is not guaranteed that
the 1/N-correction of the fractional matching is equal to C/N. This problem could be
deepen by studying the costs of the cycles of the fractional matching.

These considerations suggest to test at finite z another cancellation that holds
in the fully connected case: that one of the whole 1/N-correction in the case of loopy
matching, for weights distributed exponentially.

5.4.4 Loopy Fractional Matching

In this section we want to discuss some numerical simulations about the loopy
fractional matching. The starting idea was to test if, even at finite z, for exponentially
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Loopy fractional
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Figure 5.18. From the bottom to the top the data represent measure of the average cost
density as a function of 1/N for z = 20, 40, 60, 70, 80, 90, 100.
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Figure 5.19. Asymptotic cost of the loopy fractional matching on the ensembles of RRG
with connectivity z.
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Figure 5.20. Measures ofN(E−Ez) as function of 1/N, for different values of the connectivity
z in the loopy fractional matching.
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distributed weights there is a 1/N-correction to the asymptotic cost density or not,
as in the fully connected case (section 4.2). Nevertheless the estimates turned out
to be noisy. More accurate considerations require more statistics.

The algorithm that has been used is analogous to that discussed in Section 5.4.2
for the costs of the cycles. Unlike Section 5.4.2 here we focus only on the ground
state energy of the system.

The procedure was the following: we constructed a Markov chain of regular
graphs, at each step we computed the average optimum energy by redrawing 103

times the weights associated with the edges, and finally, we averaged over the whole
chain. As in the case of the cycles (Section 5.3) the chain was divided into blocks of
length 50.

In addition to the corrections, we are also interested in checking if the limit of the
asymptotic costs densities for z →∞ reproduces the expected π2/12 (chapter 4). For
large values of z, the generation of the first graph of the chain with the configurational
method may be inefficient. For this reason we used the Havel-Hakimi theorem
(chapter 1) to generate the first graph. However this generation is not uniform, and
then, in order to “forget” the initial condition, we started to use the chain after
103|E| swaps of edges, starting from the first graph.

In Figure 5.18 are represented the cost densities E as functions of 1/N for z =
20, 40, 60, 70, 80, 90, 100, along with fitting functions of the form:

f(N) = Ez + bz
N
. (5.64)

Each point of Figure 5.18 corresponds to a chain of length 103. In the best-fitting
functions of the form (5.64), the energy densities are those reported in Table 5.3,
while all the bz are compatible with 0. To study in greater detail the 1/N correction,
in the figures 5.20 we report the behavior of the quantities N(E − Ez) as a function
of 1/N for different values of z. At this level of precision the data show no trend, and
all the points are compatible with 0. This fact suggests that, even at finite z, there
is not a 1/N-correction to the asymptotic cost of the loopy fractional matching.

In Figure 5.19 we represent the estimates of the asymptotic costs Ez as a function
of 1/z. The data of Figure 5.19 are fitted with a function:

f(z) = c1 + c2
z

+ c3
z2 , (5.65)

and we obtained:

c1 =0.82235± 0.00006
c2 =− 0.812± 0.006
c3 =0.55± 0.09.

(5.66)

Note that, as expected, c1 is compatible with π2/12 = 0.822467....

5.4.5 Assignment Problem

In this section we discuss some numerical results about the assignment problem on
random regular graphs with valence z = 3. This problem is equal to that of section
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Figure 5.21. Density of cost of the assignment matching as a function of 1/N in the case of
random bipartite regular graph, with bipartite set of equal cardinality, and z = 3. The
costs of the edges are drawn independently from the exponential distribution (5.2).

5.4.1, except for the fact that now we have to consider only a subset of the whole
set of regular graphs; indeed the assignment problem is defined on bipartite graphs
G = (W,Z;E), with |W | = |Z|. We may expect the average optimal cost in the
limit N →∞ to be equal to that of the standard matching problem, as the RRG
ensemble is locally tree like in the large graph limit, and it is immediate to see that
all the trees can be thought as bipartite2.

In Figure 5.21 the average optimal cost densities are reported for 16 ≤ N ≤ 120,
in the case of exponential distribution of the weights (5.2). Each point corresponds
to the average of the optimal costs of 107 independent realizations of the system.
Each realization has been constructed by generating a bipartite regular graph with
bipartite sets of the same cardinality, and then by assigning to each edge of the
random graph a random weight. The generation of the graphs has been done with the
configurational model (subsection 1.1.2). As in the matching case, the uncertainties
of the estimates are improved by appropriately summing and subtracting an heuristic
cost.

Since in the fully connected case there are no anomalous scaling corrections to
the optimal average thermodynamic cost at finite sizes, we try to fit the data with a
function of the form:

E = EA + c1
N

+ c2
N2 + c3

N3 . (5.67)

The fit gives:
2A graph G is bipartite if and only if it does not contain odd-cycles.
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Figure 5.22. Behavior of N(E − Ê3) as a function of 1/N. Numerical data points are shown
along a quadratic fit in 1/N. At this level of accuracy and number of acquisitions the
data trend appears linearized for large N by the choice of the axis scaling.

EA = 0.83786± 0.00007
c1 = −1.569± 0.009
c2 = 6.5± 0.3
c3 = −19± 3,

(5.68)

and then, as anticipated, EA is in agreement with the estimate E3, and the cavity
prediction Ê3. Now we can repeat the fit (5.67) by taking fixed and equal to Ê3 the
zero-order term of the 1/N-expansion of E . This allows to improve the estimate of
c1, c2, c3. The new estimate can be done by fitting N(E − Ê), as in Figure 5.22.
Choosing a function of the form:

f(N) = c1 + c2
N

+ c3
N2 , (5.69)

the best fit is defined by:

c1 = −1.57068± 0.002361
c2 = 6.5144± 0.1495
c3 = −18.0995± 2.097

(5.70)

In this case one can observe that the 1/N-correction, c1, has opposite sign with
respect to the 1/N-correction of the standard matching. This difference, once again,
could be due to the absence of odd-cycles on bipartite graphs.
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Chapter 6

Conclusions

In this thesis work, we studied some random link matching problems on the ensemble
of random regular graphs GRRG(N, z). For all cases, we assumed that the weights
associated with the edges are independent and identically distributed according to
an exponential law.

Of the standard matching, we studied the sample-averaged energy density E
for N → ∞ and the 1/N-correction to E using the cavity method. The cavity
estimates of E , performed at the replica-symmetric level of approximation, turned
to be in good agreement with the numerical simulations for z = 3, 4. The study
of the 1/N-correction was addressed by making a conjecture, motivated by some
already known results about the matching problem on fully connected topologies.
The fundamental idea is that such correction can be written as the sum of two
contributions: one due to the presence of cycles on the graph, and one that is
cycle-independent. The presence of a cycle-dependent contribution is corroborated
by the numerical observation of an anomalous correction proportional to N−3/2.
The cavity estimations of the costs of the cycles of length ` = 3, 4, 5 turns to be
in good agreement with the numerical simulations for z = 3, 4. Assuming at finite
z the validity of a property of the fully connected case, we tried to estimate the
cycle-independent term, using the 1/N-correction of the fractional matching. For
z = 3 the validity of such property seems not to be consistent with our conjecture.
About this, a more in-depth analysis is required.

We performed some preliminary numerical studies about the fractional matching,
the loopy fractional matching, and the assignment problem. In the fractional case
we did not observe for z = 3 an anomalous correction, as it happens on the fully
connected topology. This suggests the absence of a cycle-dependent 1/N-correction
in this case.

For the loopy fractional we verified that for large z, E tends to π2/12, as expected.
Moreover, as it happens to the same problem on the fully connected topology, even
at finite z there seems not to be present 1/N-corrections to the asymptotic costs.

For the assignment problem we verified that the asymptotic cost for z = 3 is
equal to the the asymptotic cost for z = 3 of the standard matching. The finite
size corrections instead are different between the two cases. As the only difference
between the two problems is that the assignment is defined on bipartite graphs, i.e.
graphs without odd-cycles, this can be seen as a further confirmation of the presence
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of cycle-dependent contributions in finite size corrections.
The programs written in this thesis for the numerical simulations can be reused

for different purposes: it is possible to compute higher length polygon contributions,
to study the costs of the polygons for large z for a comparison with the fully connected
case, and to study in more detail the finite size corrections of the fractional and the
loopy fractional matching. Moreover, the technique used to estimate the costs of
the cycles has proved to be a powerful tool and can be readapted to other problems
defined on random graph ensembles.
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