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Abstract

Counting the number of possible tilings on a certain region is a problem that can
be reformulated as the problem of counting perfect matchings on the pertinent dual
graph. In this paper, we review some basic results, models and algorithms related to
the dimer covering problem in order to study the random dimer problem on a very
particular grpah – the weighted Aztec graph. Not only we analysed the optimal solution
at T = 0, but also explored the weighted Aztec graph at finite temperature regimes.
Our intuition was that, in principle, the non-weighted Aztec diamond graph problem
would be equivalent to the weighted one when averaging over many instances in the
thermodynamic limit. However, it was shown that the arctic circle phenomenon does
not arise for low temperatures in the weighted version.
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1 Introduction

This manuscript is divided in two main parts:

1. The literature review, contained in Sections 2-4.

2. Methods and results, condensed in Section 5.

Generally, in the literature review, we introduce some basic concepts that will be
needed to understand the problem at hand as well as earlier contributions to the analy-
sis and solution to the dimer problem.

In Section 2, we define what a dimer covering and domino tiling is and discuss differ-
ent methods to prove if a tiling is possible and state and outline the proof of the number
of feasible dimer coverings in different regions. In this section we also introduce some
definitions of graph theory that will be needed to define the random bipartite matching
problem in the next section. Finally, we give a formal definition of the Aztec diamond
region and graph, and state the most remarkable results on it.

In Section 3, we move onto combinatorial optimisation. We define the (monopartite)
matching and bipartite matching problem, talk about their close relationship to statis-
tical physics, and introduce the random bipartite matching problem. In this section we
also briefly discuss some algorithms for assignment.

After introducing the main connections between combinatorics and statistical me-
chanics, in Section 4 we dive into describing some of the most important models of
disordered systems in the context of physics. We discuss the main features of the Ising
model and link these to glassy systems models. To finish this section, we state the main
theory behind the cavity method and belief propagation, and describe how these can be
applied to the assignment problem.

Finally, in Section 5 we define the weighted dimer problem on the Aztec graph, and
present the main methods used to analyse the problem at hand, including loopy belief
propagation. After discussing the results and outcomes of the project, we conclude our
manuscript examining ways in which the project could be improved and future next
steps.

2 Dimer coverings and domino tilings: some basic results

2.1 Introduction to dimer coverings and domino tilings

The dimer problem was firstly introduced to understand the thermodynamic proper-
ties of diatomic gas molecules (i.e., ‘dimers’) being absorbed onto a crystalline substrate
[1]. Given a lattice with 2N sites, a dimer covering is an arrangement of N ‘solid’
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dimers such that every point of the lattice is covered by exactly one dimer. In Mathe-
matics, this is usually called a domino tiling, with the dimers being the dominoes, and
the domino tiling being a non-overlapping covering by such dominoes.

Starting with a region and a set of dominoes, we are interested in addressing questions
like the existence of a tiling or how many tilings there are [2]. For example, can we tile
with dominoes a 6× 6 chessboard if we remove two squares from opposite corners? The
key to answering this question hides in the apparently irrelevant characteristic black-
and-white colouring of chessboards. In a domino tiling, each domino will lie exactly on
one square of each colour. This implies that, for a domino tiling to exist, there must be
the same number of black and white squares. Therefore, by removing two squares from
opposite corners, which are the same colour, we conclude there is no tiling possible, as
there are now 23 black squares and 21 white squares. This is an example of a colouring
argument [2].

A fitting next step is to ask ourselves what happens when we remove one black square
and one white square from the chessboard. This time we have the same number of black
and white squares, which is a necessary condition, but it does not ensure that a tiling is
possible. It is in fact possible to do so, and one can see that by considering any closed
path that involves all the squares in the chessboard.

Although colouring arguments are widely used to prove the nonexistence of certain
tilings, there are certain cases in which these are not enough. For instance, a triangular
array of n(n+1)

2 unit regular hexagons, call it T (n). For n = 3 or n = 5, this region cannot
be covered with a tiling of tribones, regions formed by three close-packed hexagones, i.e.,
T (2). John Conway discovered a way to show there does not exist a tiling for such
regions by using combinatorial group theory techniques involving the Caley graph of a
group (see [3]).

2.2 Tilings and graph theory: perfect matchings

Another formulation of the tiling problem in combinatorial optimisation is that of
perfect matchings in a bipartite graph, i.e., the matching problem. A domino
tiling is equivalent to finding a perfect matching on a graph:

Definition 1: Perfect matching

Given an undirected graph G = (V, E), a matching is a set of edges without
common vertices. A perfect matching is a matching where every vertex is
connected to exactly one edge, i.e., the matching involves all vertices in the graph.

The goal is to find a perfect matching such that a specific cost function is minimised.
This idea will be formalised in the next section. The following theorem gives a criterion
for the existence of a domino tiling on a graph.
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Theorem 1: Hall’s theorem

Given a bipartite graph G = (V1 ∪ V2; E) there exists a perfect matching between
the first vertex set V1 and the second vertex set V2 if and only if ∀A ⊆ V1 we have
|A| ≤ |R(A)| where R(A) ⊆ V2 is the set of adiacent vertices to A.

In fact, Hall’s theorem helps us demonstrate that a tiling does not exist
[4, 2]. In order to show a tiling is impossible on a planar lattice, it is sufficient to find in
the region A of k cells of one colour, say black, which have fewer than k neighbouring
white cells.

2.3 Enumerating tilings

After having proved that a tiling problem can be solved, the focus is redirected to
the number of possible tilings. One of the most important results about enumerating
tilings is the number of domino tilings of a m× n chessboard Gm,n.

Theorem 2: Tilings on a chessboard

The number of domino tilings of a m× n chessboard (m and n even) is
m
2∏
j=1

n
2∏

k=1

(
4 cos2 jπ

m+ 1 + 4 cos2 kπ

n+ 1

)
. (1)

This theorem was obtained independently in 1961 by Kasteleyn [5] and by Fisher and
Temperley [6]. It is an outstanding formula since the numbers that are being multiplied
are often not even rational number, but still the formula gives an integer as a result of
this multiplication. In the following paragraphs, we will briefly review the main methods
used to prove Theorem 1 in both papers.

In [5], Kasteleyn stated that the number of tilings of a m × n chessboard or the
number of perfect matchings of the corresponding bipartite planar graph Gn,m is given
by the pfaffian of the Kasteleyn matrix. In order to state Kasteleyn’s theorem, we need
a few other definitions first.

Definition 2: Kasteleyn weight

Given two vertices in Gn,m, u and v, we define the Kasteleyn weight w(u, v) as:

w(u, v) =


1 if (u, v) is a horizontal edge
i if (u, v) is a vertical edge
0 else
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A Kasteleyn-weighted grid graph G′n,m is the grid graph Gn,m where the edges are
weighted according to the Kasteleyn weight.

We may now state Kasteleyn’s Theorem.

Theorem 3: Kasteleyn’s theorem

Define the Kasteleyn matrix Kn,m to be the adjacency matrix of the Kasteleyn-
weighted grid graph G′n,m. Then, the number of perfect matchings of Gn,m is given
by
√
| det(Kn,m)|.

By calculating the eigenvalues of Kn,m, Kasteleyn obtained the announced formula
for the m× n chessboard:

Tn,m =
∣∣∣ m∏
j=1

n∏
k=1

(
2 cos jπ

m+ 1 + 2i cos kπ

n+ 1

) ∣∣∣ 1
2 (2)

Remark 1:

For n,m even, one can arrive to Eq. 1 from Eq. (2):

Tn,m =
∣∣∣ m∏
j=1

n∏
k=1

(
2 cos jπ

m+ 1 + 2i cos kπ

n+ 1

) ∣∣∣ 1
2 =

=
m∏
j=1

n∏
k=1

(
4 cos2 jπ

m+ 1 + 4 cos2 kπ

n+ 1

) 1
4

=

=
m∏
j=1

n∏
k=1

(
4 cos2 jπ

m+ 1 + 4 cos2 kπ

n+ 1

) 1
4

=

=
m
2∏
j=1

n
2∏

k=1

(
4 cos2 jπ

m+ 1 + 4 cos2 kπ

n+ 1

)

Fisher and Temperley [6] got to the same result as Kasteleyn by obtaining a partition
function (statistical mechanical object that will be defined further on), and with some
operator techniques, they reduced it to a Pfaffian [7]. Later on, in 1967, Elliot Lieb pub-
lished a very elegant proof which used a technique that is widely used in enumerative
combinatorics and statistical mechanics – the transfer matrix method [8].

In both papers, Kasteleyn’s and Temperley and Fisher’s, they showed the following
result for 2n× 2n square chessboards [2]:
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Theorem 4: Asymptotic number of domino tilings

The number of domino tilings of a 2n × 2n square is approximately C4n2 with
C = e

G
π = 1.338515152 . . . . G is the Catalan constant, which is defined by

G =
∞∑
n=0

(−1)n
(2n+ 1)2 = 0.915965594 . . .

2.4 The Aztec diamond

The main focus of this project is studying the statistics of the tilings of the Aztec
diamond. The Aztec diamond of order n is a region constituted by all unit squares
of a square lattice whose centers (x, y) fulfill |x| + |y| ≤ n, where n is a fixed integer.
Notice that x and y are half-integers. For example, for n = 3

The Aztec diamond graph of order n is the dual graph of the Aztec diamond
(defined above) where the vertices correspond to the squares and the edges between two
vertices exist if and only if the equivalent squares in the aztec diamond are adjacent [9].
Identifying each ‘chosen’ edge in a perfect matching with a domino of the tiling in the
Aztec diamond, it is not difficult to intuit that there is a bijection between the perfect
matchings on the Aztec diamond graph and the domino tilings of the Aztec diamond
[9], as it was described for any type of graph generally in the previous section.

As we increase n, one can see that the Aztec tilings are constituted by a circular re-
gion where the tiles exhibit well-mixed orientations, and four regions surrounding it with
a “brick-wall” pattern [10] (see Figure 1). These two well-differentiated regions are usu-
ally called the temperate zone and the frozen region respectively. Their appearance
constitute the arctic circle phenomenon, and it is described by the following theorem.
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Figure 1: Example of Aztec Diamond of order n = 1000 drawn uniformly where the
arctic circle phenomenom can be observed. The tiles in the corner correspond to the
frozen regions, and the tiles with mixed orientations in the circle, to the temperate zone.
In this picture adapted from online resources of Université catholique de Louvain (see
https://sites.uclouvain.be/aztecdiamond/), north, south, west and east dominoes are
painted respectively in red, blue, yellow and green. The algorithm used to produce this
Aztec Diamond is a modified version of Propp’s Generalised Domino Shuffling algorithm
[11, 12].
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Theorem 5: The Arctic Circle theorem

Let ε > 0. Then, for all sufficiently large n, all but an ε fraction of the domino
tilings of the Aztec diamond of order n will have a temperate zone whose boundary
stays uniformly within distance εn of the inscribed circle.

Another crucial result proved by Elkies, Kuperberg, Larsen and Propp in [13] is the
number of tilings of the Aztec diamond:

Theorem 6: Tilings on the Aztec diamond

The number of domino tilings of the Aztec diamond of order n is 2
n(n+1)

2 .

Remark 2:

The Aztec diamond has T = 2
n(n+1)

2 tilings and consists of N = 2n(n + 1)
squares. This means that the number of degrees of freedom per square is
N
√
T = 1.189207115 . . . [2]. For the 2n × 2n chessboard, the degrees of free-

dom per square is approximately C = 1.338515152 . . . from Theorem 3. This
means that the intuition that it is ‘simpler’ to tile a square board than the Aztec
diamond is indeed correct.

In [13], there are four different proofs given for Theorem 5, including the celebrated
domino shuffling algorithm [11]. Here, we will explore the first proof given. A bijec-
tion is established between tilings of the Aztec diamonds and height functions, and the
lattice structure of alternating sign matrices is exploited.

Definition 3: Height function

The height function HT is defined as follows:

1. Start at a reference vertex v0 of some domino where the height will be 0.

2. Take an edge-path γ from v0 to some other vertex v.

3. Along γ, the height can vary ±1 along each edge.

4. Given a standard black-and-white coloring of the chessboard, if there is a
black square on the left of the edge being traversed, the height increases by
1. Otherwise, it decreases by 1.

HT satisfies the following properties [14]:

• HT takes the subsequent values when moving counterclockwise along the
boundary of the Aztec diamond: 0, 1, . . . , 2n+1, 2n+2, 2n+1, . . . , 0, . . . , 2n+
1, 2n+ 2, 2n+ 1, . . . , 0.
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• When moving from one vertex v1 to another v2 we have that either HT (v2) =
HT (v1) + 1 or HT (v2) = HT (v1)− 3.

Every function that satisfies these two conditions defines a domino tiling.

The height function is a Z-valued function defined on the vertices of the tiling, and
up to an additive constant and can be thought of as a way of extending a 2-dimensional
domino tiling to 3D.
Given a height function like the one shown in Figure 2 (left), by rotating it 45º, one
obtains two matrices defined by the even and odd rows of the right image in Figure 2
respectively. These, up to re-scaling, represent the extended matrices of two alternating-
sign matrices.

Definition 4: Alternating-sign matrices and their extended matrices

Alternating-sign matrices are a special type of combinatorial matrices. They
are square matrices with entries of 0, 1 and −1 such that the nonzero elements in
each row and column alternate sign and the sum of each row and column is 1.
Let A = (ai,j)i≤i,j≤n be an alternating-sign matrix of order n. Then, we define
its extended matrix A∗ = (a∗r,s)i≤r,s≤n of order n+ 1 as

a∗r,s = r + s− 2
r∑
i=1

s∑
j=1

ai,j .

There is a bijection between alternating-sign matrices of order n and their ex-
tended matrices.

One can reconstruct the domino tiling of the Aztec diamond from this special pair
of matrices. And, by looking at how the two alternating-sign matrices are related, a re-
currence relation over the number of tilings of Aztec diamonds of order n and n− 1 [13]
can be obtained. The proof of Theorem 5 relies on these properties of alternating-sign
matrices constructed on the Aztec diamond.

Remark 3: The number of alternating-sign matrices and Statistical
Physics

The number of alternating-sign matrices of order n was conjectured to be

n−1∏
j=0

(3j + 1)!
(n+ j)!

by Mills, Robbins, and Rumsey in [15]. Later on, this formula was proved by
Zeilberger [16] and by Kuperberger [17] in 1996. Kuperberg’s proof was more
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concise than Zeilberger’s and showed there is a one-to-one correspondence between
alternating-sign matrices and a configuration from statistical physics called the
six-vertex model or square ice model. This illustrates one of the many
connections between combinatorics, domino tilings, and statistical physics (see
section 5).

Figure 2: Example of Aztec Diamond tiling (left) and its height function (centre)
(adapted from [14]). The image on the right originates from the rotation of the Aztec
diamond clockwise by π

4 . The even rows highlighted in blue define the matrix A, and the
odd ones in red, B. Upon correct normalisation, they represent the extended matrices
of two alternating-sign matrices. From this unique pair and their relation between each
other, one can reconstruct the domino tilings and prove Theorem 5.

Another feature of the height functions that is closely related to statistical mechanics
is conformal invariance.

Theorem 7: Conformal invariance of the height function on domino
tilings

The scaling limit of the height function, i.e. when the lattice spacing approaches
zero, tends to the massless Gaussian free field [18]. This is a conformally
invariant continuous process that is a natural d-dimensional-time analog of Brow-
nian motion [19].

13



3 THE RBMP

3 The random bipartite matching problem

3.1 The matching problem and the bipartite matching problem (BMP)

In the previous section, we discussed the number of possible configurations of domi-
noes on a chessboard and on the Aztec diamond. To do so, we aided ourselves with graph
theory and combinatorics. We also commented on some of the connections to statisti-
cal physics. The reality is that the relationship between domino tilings and statistical
physics is much deeper than we have described up to this point. We will motivate this
point in the following paragraphs.

Now, imagine we associate a weight to each pair of squares where we can place a
domino. This is equivalent to having weights associated to each edge on the region’s
corresponding dual graph, i.e.,

Definition 5: Weighted graph

Define a function w : E → R, which we associate to the graph G = (V, E). Given
an edge e ∈ E , we call w(e) the weight of e.

When we consider a weighted graph, our main goal switches from counting configura-
tions or feasible solutions to finding the optimal solution amongst all possible solutions.
This is a combinatorial optimisation problem, where the number of feasible solutions,
i.e., the number of possible tilings, can be extremely large, but is nonetheless finite.

In order to formalise this idea, let us define the k-assignment problem.

Definition 6: The k-assignment problem

Consider the complete weighted bipartite graph KN,M = (V1 ∪ V2, E) with
weight function w : E → R+, and cardinality k ≤ min {N,M}. In the k-
assignment problem, we aim to find a perfect matching M ⊆ KN,M with EM ⊆ E
such that the cost functional

C[M ] := 1
|EM |

∑
e∈EM

w(e) (3)

is minimised.

Remark 4: The cardinality matching problem

When w(e) = 1 ∀e, the goal is to find a matching with as many edges as possible
as long as each vertex is adjacent to at most one edge. This is sometimes referred
to as the cardinality matching problem. Finding a possible domino tiling in
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3.2 From combinatorics to statistical physics 3 THE RBMP

a region is analogous to finding a cardinality matching on its dual graph. This
is the case we have been studying so far, where all we were doing was counting
configurations, rather than finding the one(s) that optimises the cost.

Particularly, when the k-assignment problem is formulated on the complete bipartite
graph KN,N , i.e. the N -assignment problem, we call it the bipartite matching prob-
lem or the assignment problem (BMP) [20]. One of the most celebrated algorithms
for the solution of the assignment problem is the Hungarian algorithm [21], an algorithm
with polynomial computational complexity.

Remark 5: The generalised bipartite matching problem

The BMP can be defined on an arbitrary bipartite non-directed graph
G = (V1 ∪ V2, E), as long as |V1| = |V2|. This allows us to study the weighted
dimer covering problem on different regions, such as the Aztec diamond. For
simplicity, we will refer to this generalisation from now on as the BMP.

Remark 6: Other algorithms for assignment

Apart from the Hungarian algorithm which was designed to solve the assignment
problem, there are other algorithms that can be used. For example, the simplex
method [22]. It is originally intended for linear optimisation problems, but since
the assignment problem can be reformulated as a linear optimisation problem [20],
the simplex method can be used to solve it. Another two remarkable algorithms
are belief propagation [23], which is based on the cavity method, and the
domino shuffling algorithm. The latter was devised specifically to get the
sum of the weights associated to the matchings of the weighted Aztec diamond
graph.

3.2 From combinatorics to statistical physics

There is a direct relationship between optimisation problems and statistical physics
[23]. Given the bipartite matching problem, one can explore its natural mapping to
statistical mechanics by introducing the Boltzmann distribution.

Let χ be the space of configurations. This set contains all possible matchings M or
dimer coverings of a particular graph. Let the cost or energy function be C(M), defined
as in Eq. 3. For any β = 1

T with T ≡ temperature, each matching M is assigned a
probability

pβ(M) = e−βC(M)

Z(β) (4)

15
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with

Z(β) =
∑
M∈χ

e−βC(M), (5)

where pβ(M) is the Boltzmann distribution and Z(β) is the partition function of
the system, a normalisation constant. Notice that both T and therefore, β are positive
parameters.

When β →∞, the exponentials that dominate are the ones with the lowest energies,
i.e., the probability concentrates on the ground states. Hence, in this limit we recover
the optimisation problem, where we want to look at optimal or minimum costs.

In the limit of infinite T , as β → 0, pβ(M) = 1 ∀M . This means that all matchings
are equally likely. In a way, it is as if the weights of the edges were set to be the same
and therefore, we are back at counting all possible matchings, regardless of their cost.

In statistical mechanics, when a system is at thermal equilibrium with a heat bath
at fixed T , the probability that the system will be in a certain state is given by the
Boltzmann distribution. In many cases, a thorough analysis of the properties of the
system at finite β can give key insights about the behaviour of the system.

Some of the most important quantities are the thermodynamical potentials, as they
represent the thermodynamic state of the system. In particular, the Helmholtz free
energy. It is the work available for use to a system at constant T and volume.

Definition 7: The thermodynamic potentials

The Helmholtz free energy can be expressed in terms of the partition function
as follows

F (β) = − 1
β

lnZ(β)

or in term of the canonical entropy S(β) and the internal energy as

F (β) = U(β)− 1
β
S(β) ,

where

U(β) = 〈C(M)〉 =
∑
M∈χ

pβ(M) C(M) ;

S(β) = −
∑
M∈χ

pβ(M) ln pβ(M).

16
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Remark 7:

Notice that all the thermodynamic potentials above were defined with respect to
the bipartite matching problem where the energy of the system is the cost of the
matching, and the weights of the edges are the cost that the system pays when
an edge is amongst the edges of a matching.

Remark 8: The partition function as a product of partition functions

We have that

Z(β) =
∑
M∈χ

e−βC(M) =
∑
M∈χ

e
−β
∑

e∈EM
w(e)
|EM | =

=
∑
M∈χ

∏
e∈EM

e
−β w(e)
|EM | =

∏
e∈EM

∑
M∈χ

e
−β w(e)
|EM | =

∏
e∈EM

Ze(β)

where Ze(β) = ∑
M∈χ e

−β w(e)
|EM | is the partition function of the sub-system of the

edges of the perfect matchings.

Remark 9: The thermodynamic limit

Since the number of particles N of thermodynamical systems is typically of order
1023, statistical physicists normally focus on the N → ∞ limit, also called the
thermodynamic limit [23]. In this limit, thermodynamic potentials are O(N),
and the system becomes translationally invariant [24]. Therefore, it is convenient
to introduce the intensive thermodynamic potentials, which do not depend
on the quantity of ‘substance’ that we are looking at. To do so, we just divide by
N our ‘original’ potentials and take the limit, assuming it exists. In the case of
the bipartite matching problem, we will divide through the number of nodes of
the graph in order to ensure this well-behaviour on the limit of large graphs.

3.3 The random bipartite matching problem (RBMP) and statistical
mechanics

In the bipartite matching problem, we assumed that, once the optimisation problem
was defined, the parameters of the graph (e.g. the weights) were fixed and the same for
all instances. In reality, this need not be the case.

In order to examine in more depth the typical features of a given optimisation prob-
lem, it is convenient to collect data from many instances and study its solution on
average, and for very large inputs. The statistical nature of this approach lead statis-
tical physics to play a crucial role in developing new techniques for this type of problems.
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Definition 8: The random bipartite matching problem

In the random bipartite matching problem (RBMP) or random assignment prob-
lem on the complete graph KN,M = (V1 ∪ V2, E), the weights {w(e)}e∈E are ran-
dom variables drawn from a specific probability distribution.

Remark 10:

In the simplest scenario, the weights are independently and identically dis-
tributed (i.i.d.) random variables, i.e., they all have the same probability
distribution, say ρ(w), but are mutually independent.

Remark 11:

The weights being drawn from a probability distribution independently defines
on itself a collection of random instances of the problem. We are interested in
properties like the average optimal cost or the optimal cost distribution for a given
number of realisations in the thermodynamic limit [20].

In [25], Aldous studied rigorously the RBMP in the thermodynamical limit for i.i.d
weights with probability distribution ρ(w) = θ(w) e−w, proving the formulas obtained
by Mézard and Parisi in 1985. By constructing Poisson-weighted infinite trees (i.e. un-
folding maps) from the weighted complete graph, being deeply inspired by the cavity
method (firstly designed for glassy systems), Aldous proved the following results:

Theorem 8:

The distribution of the weights on the edges of the optimal matching is

ρ0(w) = θ(w)e
−w + w − 1
4 sinh2 w

2
. (6)

Corollary 1: AOC of the RBMP

The average optimal cost (AOC) of the RBMP in the thermodynamical limit is

lim
N→∞

CRBMP
N =

∫ ∞
0

wρ0(w)dw = π2

6 (7)

Remark 12:

Mezard and Parisi already got Eq. 6 and Eq. 7 in 1985 using the replica approach
[26], which we will outline in the next section.
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4 DISORDERED SYSTEMS

However, Eq. 7 does not provide any information about finite size corrections. Parisi
conjectured in 1998 [27] a formula for the average cost of the assignment problem on the
complete graph with exponential weight distribution for finite N .

Theorem 9:

In the random assignment problem, the average optimal cost is

CRBMP
N =

N∑
i=1

1
i2

(8)

Remark 13:

The RBMP can be formulated on a generic graph G, just like the BMP. In section
5, we will focus our analysis on the statistics of the weighted dimer covering
problem (or RBMP) on the Aztec diamond graph.

4 Disordered systems and random assignment

The fact that Statistical physics deals with large systems involving many degrees of
freedom subject to constraints and interactions, led physicists to develop general tools
for the investigation of this kind of problems. As an example, let us start introducing
a simple model, the Ising model. We will discuss then an algorithm used to solve this
(and many similar models) on graphs and finally its application to matching problems.

4.1 Ising model

One of the simplest models of interacting many-body systems is the Ising model.
It was firstly introduced to understand phase transitions in magnetic systems [28] by
looking at the interaction of the system’s binary units.

Let us consider a generic graph G. The graph can be, for example, a cubic lattice
C = {1, 2, . . . , L}d ≡ {i}i=1,...,N in d dimensions with side length L and N = Ld points,
where each element or point i is a site. In Figure 3 the 2-d lattice is a grid graph of 6
by 6, and the nodes, represented by the blue points, are the sites.

A site could be anything from a lattice point on a crystal to a neuron in a neural
network [29], but for now, we will adhere to the terminology used in ferromagnetism for
simplicity.

Each of the sites is assigned a variable σi called the spin. It is characterised by the
binary value σi = ±1. In ferromagnetism, the Ising spin represents the microscopic
magnetic moment [29]. If the spin is pointing up (↑), σi = +1, and if it is pointing down
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4.1 Ising model 4 DISORDERED SYSTEMS

Figure 3: Example of 2-dimensional lattice of side L = 6. The blue points represent the
sites, and (ij) is a bond of neighbouring sites.

(↓), σi = −1. In the model, sites interact with their nearest neighbours. In a lattice of
dimension d, each site has 2d nearest neighbours. A pair of connected sites (ij) is called
a bond. To each bond, we assign an interaction energy −Jσiσj . Thus, the interaction
energy of (ij) is

E(ij) =
{
−J if σi = σj

+J otherwise

The size of J modulates the strength of the interaction or coupling of the spins, whereas
the sign of J denotes if it is energetically more favourable for neighbouring spins to align
(↑↑ or ↓↓) or anti-align (↑↓).

In the case of J > 0, the state where the two spins are the same has a lower en-
ergy, meaning that it is more stable, and that all pairs of spins will tend to have the
same orientation [29]. This leads to macroscopic magnetism, and the interaction is said
to be ferromagnetic. On the other hand, when J < 0, antiparallel arrangements are
favoured. In this case the interaction is said to be antiferromagnetic. A configuration
~σ = (σ1, . . . , σN ), with σi ∈ {−1,+1} being the spin of the ith site, has energy function
or Hamiltonian

E(~σ) = −J
∑
(ij)

σiσj − h
∑
i∈C

σi, (9)

where the first sum runs over all the couples of sites i, j that are nearest neighbours.
The second term in the energy function corresponds to the Zeeman energy, and h ∈ R
measures the applied external magnetic field [23]. Assuming now that the system is in
contact with a thermal bath at temperature T = β−1, a goal of statistical physics is to
estimate the statistical properties of the system given that the configuration ~σ is visited
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4.2 Spin glasses and solution by replicas 4 DISORDERED SYSTEMS

in the evolution of the system with probability

P (~σ) = 1
Z(β)e

−βE(~σ), Z(β) =
∑
~σ

e−βE(~σ). (10)

Remark 14:

Calculating the free energy density f(β) in the thermodynamic limit is not an
easy task. So far, Ising solved the d = 1 in 1924 and showed there are not phase
transitions. In 1948, Onsager solved it for the 2-dimensional case, where there
is a second order phase transition. The problem remains unsolved for higher
dimensions, but the main features of the solution are known.

Let us discuss qualitatively what we can expect from the properties of this model. In
the limit of infinite temperature, all configurations ‘weigh’ the same in the Boltzmann
distribution, so the spins are completely independent. As T → 0, the Boltzmann dis-
tribution concentrates on the ground states. When there is no external magnetic field,
there are two degenerate ground states: one where all spins point up, and other one
where they all point down. When we turn back on the magnetic field, one of the two
configurations prevails: ~σ(+) = (+1, . . . ,+1) for h > 0 and ~σ(−) = (−1, . . . ,−1) for
h < 0.

Remark 15:

In dimensions higher or equal than d = 2, the spontaneous magnetisation, a
quantity that represents a cooperative response to the magnetic field, can be non-
zero for β > βc. This is the so called ferromagnetic phase. For β < βc, the
spontaneous magnetisation is 0, and we are in a paramagnetic phase. There is
a phase transition at β = βc. Note that for the case d = 1, βc = ∞ and there is
no phase transition.

4.2 Spin glasses and solution by replicas

Let us consider now an Ising-type model on a generic graph G with energy function

E(~σ) = −
∑
(ij)

Jijσiσj − h
∑
i∈C

σi . (11)

In a spin glass system, each Jij is a random quantity [20]. Similarly to the RBMP,
the set of values J = {Jij} are i.i.d. random variables drawn from a particular proba-
bility distribution density ρ(J). We extract J once for all pairs for each instance. This
means that the disorder is quenched because these random variables do not vary with
time – they are ‘frozen’.
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Remark 16: Sign of Jij

The probability distribution ρ(J) has to be such that it allows Jij both to be
negative or positive. Like this, we ensure that the model will exhibit both ferro-
magnetic and paramagnetic interactions.

Definition 9: The Edwards-Anderson (E-A) model

When G is a hypercubic lattice in d dimensions, the originated model is the
Edwards-Anderson model. This is an example of disorder system, and more
specifically, of a spin glass model.

Definition 10: The Sherrington-Kirkpatrick model (S-K) model

By considering a complete graph, i.e., G ≡ KN,N , one arrives to the Sherrington-
Kirkpatrick (S-K) model. This model is a mean-field version of the E-A model.

A generic disordered system is constituted by two main ‘ingredients’:

1. Randomness. In the E-A model, this is represented by the coupling constants
Jij being random variables.

2. Frustration. This phenomenon arises when there are local constraints conflictig
with each other [20]. For example, in the 2-dimensional E-A model, when there is
a cycle of four sites where three edges have Jij < 0 and one of them, Jij < 0. One
can easily see that there is no configuration of Ising spins that can minimise all
energy contributions of the edges independently. This gives rise to the fact that
the energy landscape, and hence, the minimum energy configuration, has not a
simple and predictable structure at all.

We are interested in averaging over the disorder. In the case of the E-A model, over
all values of J. From here on, we will represent the average of a function with respect
to J as • . When performing this average over thermodynamical functionals we have to
be careful as it is not a trivial task.

Remark 17:

The free energy FG for a disordered system on an arbitrary graph G = (V, E) is a
self-averaging property [20]. This means that

lim
|V|→∞

F 2
G

FG
2 = 1.

However, the partition function is not self-averaging.
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In order to calculate FG in the E-A model, we need to calculate lnZG since

FG(β,J) := − lnZG(β,J)
β

= − 1
β

∏
(ij)

∫
ρ(Jij) dJij

 lnZG(β,J). (12)

The replica trick relies on the following identity to facilitate the calculation above:

lnZ = lim
n→0

Zn − 1
n

.

Hence, the calculation of lnZG(β,J) is reduced to calculating ZnG (β,J), which turns
out to be a much easier computation. In a way, it is as if we were averaging over n copies
or replicas of the system.

Remark 18:

In Parisi’s solution to the S-K model, the free energy of a spin glass in the thermo-
dynamic limit has multivalley structure, i.e., many minima are separated by in-
finitely high barriers. Each valley corresponds to a state, and ergodicity break-
ing occurs [20]. This means that the average evolution of the system can no
longer be predicted from the trajectory of a ‘typical’ point. Ergodicity breaking
is closely related to replica symmetry breaking and slow dynamics in dis-
ordered systems where a mean-field approximation has been introduced in our
calculations, like it happens in the S-K model.

Remark 19: The Edward-Anderson order parameter

The Edward-Anderson order parameter qEA quantifies, in a way, the level
of order/disorder. When β → 0 and the spins are randomly oriented, qEA = 0.
However, for β →∞, qEA = 〈σi〉 > 0 since 〈σi〉 6= 0 for each instance.

4.3 The cavity method and belief propagation

The cavity method [30] [31] is a statistical mechanics technique originally designed
to solve a specific instance of a random optimisation problem in the context of spin glass
models, and particularly, the Sherrington–Kirkpatrick model. However, it has been
proven to be a powerful tool too when it comes to finding the solution of optimisation
problems, such as k-satisfiability [32] and graph coloring [33]. In the next paragraphs, I
will outline the theory of this method following the main layout in [28], [34] and [23].

Suppose that we have an Ising-type system chracterised by N spin-like variables
where ~σ = (σ1, . . . , σN ) with σi ∈ {−1,+1} fixes a configuration of the system. Let us
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also assume that the energy function or Hamiltonian 1 of the system is of the form

H(~σ) =
M∑
a=1

Ea(~σ∂a) +
N∑
i=1

Wi(σi) . (13)

Let us break down the meaning of each of the components of Eq. 13. Ea is a function
defined on the subset ~σ∂a, while the functions Wi depend only on one variables σi.

In order to understand better Eq. 13, we will introduce a graphical representation of
the problem called factor graph. The factor graph is a bipartite graph defined by

FH = G(Vσ,VE ; E), |Vσ| = N, |VE | = M, E ⊆ Vσ × VE .

The factor graph represents a system of

• N “variable” vertices Vσ = {i}i that we associate to the N variables ~σ so that
i←→ σi ;

• M “function” vertices VE = {a}a that we associate to the M terms (or interactions)
{Ea}a in the Hamiltonian;

• (i, a) ∈ E iff σi ∈ ~σ∂a.

Figure 4: Factor graph of the Ising model on the 2-dimensional lattice with zero magnetic
field. The red square nodes are the factor (or function) nodes, and the blue circle nodes
are the variable nodes. Notice that there are no edges joining two nodes of the same
color or type.

By applying the Cavity Method, one can in principle understand large systems like
the one that is defined by the Hamiltonian in Eq. 13. The idea is to compare systems
which only differ locally to the original one. These are called cavity systems. Cavity
systems are devised in such a way that observables that are highly correlated and close
to the deformation are almost uncorrelated, but minimally perturb other observables

1NB the change in notation here in order to avoid confusion between the Hamiltonian of the system
H and Ea
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4.3 The cavity method and BP 4 DISORDERED SYSTEMS

that are far from the deformation (Cavity assumption) [34].

In fact, the cavity method has its foundations on local modifications of the factor
graph, and on the study of the new system versus the old one, as mentioned above. This
procedure is carried out in three ‘steps’.

First, considering the system’s Hamiltonian in Eq. 13, with (i, a) ∈ E being an edge
on the factor graph, introduce a new modified Hamiltonian with N + 1 variables

Ha�− i(~σia) =
∑
b 6=a

Eb(~σ∂b) + Ea(~σ i←→ia
∂a ) +

N∑
i=1

Wi(σi) , (14)

where ~σia = ~σ ∪ {σia}, and σia is the ‘new’ variable. Ea(~σ i←→ia
∂a ) denotes that Ea is

evaluated on all variables but the variable σi that has been substituted with the variable
σia . Notice that, in the last term, the sum is run from i = 1 to i = N rather than to
i = N + 1. This is depicted in Figure 5, top right diagram, as removing an edge and
inserting a new node.

In the same way that we defined Eq. 14, a function vertex can be removed, say a,
which leads to a Hamiltonian with M − 1 function vertices (see Figure 5, bottom left
diagram):

H
�a
(~σ) =

∑
b 6=a

Eb(~σ∂b) +
N∑
i=1

Wi(σi) , (15)

Another variation that we can apply to the factor graph is removing a variable vertex
i and adding |∂i| variables σib , one for each b so that σi ∈ ~σ∂b (see Figure 5, bottom
right diagram):

H
�i
(~σ

�i
) =

∑
b: σi /∈ ~σ∂b

Eb(~σ∂b) +
∑

b: σi ∈ ~σ∂b

Eb(~σ i←→ib
∂b ) +

∑
j 6=i

Wj(σj) , (16)

where we denoted ~σ
�i

:= (~σ \{σi}) ∪
⋃
b: σi ∈ ~σ∂b{σib}.

Hence, the Hamiltonian in Eq. 16 now has N −1+ |∂i| spin variables, and once more
one body contributions for the new variables were not introduced, i.e., no Wi(σib).

In Figure 5, it can be seen that introducing these new modified Hamiltonians create
a local gap, hole or cavity in the factor graph, which is in a way a ‘local perturbation’
of the initial factor graph. In fact, having newly-defined Hamiltonians implies that their
respective thermodynamical functionals can be obtained as well.

In analogy with the three modified Hamiltonians that we described above, three
types of ‘magnetic’ fields can be defined on these graphs:
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Figure 5: Diagrams adapted from [20]. Top left diagram shows the factor graph of the
original Hamiltonian. The top right diagram represents the factor graph that originates
when we add a new variable σia , i.e., when we remove the edge joining i to a and insert
a new node ia in light blue. The bottom left diagram shows the factor graph that we
get after removing a function vertex, say a. Bottom right diagram adds the dashed light
blue variables that represent σib . In order to see the differences between the original
and the newly-defined Hamiltonians, compare every diagram with the top left one, the
original one.
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• The local magnetic field hi acting on the spin σi. By considering the original
Hamiltonian, the magnetic field interpretation of hi arises from writing

P (σi = σ) ≡ 〈δσi σ〉 = e−βhiσ

2 cosh (βhi)
. (17)

• The cavity field hi→a. Consider Eq. 16. Then, we define hi→a to be such that

P (σi = σ) ≡ 〈δσi σ〉i�− a = e−βhi→aσ

2 cosh (βhi→a)
. (18)

• The cavity bias ua→i. For the same Hamiltonian as above, i.e., for the one in
Eq. 16, we can also define ua→i such that

P (σia = σ) ≡ 〈δσia σ〉i�− a = e−βua→iσ

2 cosh (βua→i)
. (19)

Now, let us introduce the cavity ansatz, which we will require to hold.

Definition 11: The cavity ansatz

In the N −→∞ limit, we assume that the follow approximations in a pure state〈 ∏
b∈∂i

δσibσ
〉
�i
'
〈 ∏
b∈∂i

δσibσ
〉
�i
, (20)

〈 ∏
j∈∂a

δσjσ
〉
�a
'
〈 ∏
j∈∂a

δσjσ
〉
�a
, (21)

hold for any variable node i and any factor node a. Furthermore,

〈δσiaσ〉�a ' 〈δσiaσ〉i�− a , (22)
〈δσiσ〉�a ' 〈δσiσ〉i�− a . (23)

Remark 20:

The cavity ansatz, sometimes also called replica symmetric assumption, re-
quires that in the modified factor graphs, i.e., in the ones where there is a cavity,
the correlations between both ‘sides’ of the cavity are almost negligible. The cav-
ity ansatz is exact for tree-like factor graphs or if there are very long cycles
in the factor graph so that these correlations decay fast enough in such cycles.
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Definition 12: The cavity equations

Combining the cavity ansatz equations with Eqs. 17, 18 and 19, we arrive to the
cavity equations:

e−βhi→aσ

2 cosh (βhi→a)
∝ eβWi(σi)

∏
b∈∂i, b 6=a

e−βub→iσ

2 cosh (βub→i)
(24)

e−βua→iσ

2 cosh (βua→i)
∝

∑
~σ∂a

δσiσ e
βEa(~σ∂a) ∏

j∈∂a, j 6=i

e−βhj→aσj

2 cosh (βHj→a)
(25)

For the case where Wi(σi) ≡ wiσi, the cavity equations can be expressed in a simpler
form:

hi→a = wi +
∑

b∈∂i, b 6=a
ub→i , (26)

ua→i = 1
2β ln

∑
~σ∂a, σi=−1 exp

[
−βEa(~σ∂a)− β

∑
j∈∂a, j 6=i hj→a

]
∑
~σ∂a, σi=+1 exp

[
−βEa(~σ∂a)− β

∑
j∈∂a, j 6=i hj→a

] . (27)

Now that we have the equations above, we can write the free energy F of the original
system in terms of Fi�− a, F�a and F

�i
in analogy to the modified Hamiltonians:

F ' Fi�− a −
1
β

∑
σ∈{−1,1}

eβ(hi→a+ua→i)σ

4 cosh (βhi→a) cosh (βua→i)
; (28)

F ' F
�a
− 1
β

ln
∑
~σ∂a

e−βEa(~σ∂a) ∏
i∈∂a

e−βhi→aσi

2 cosh (βua→i)
; (29)

F ' F
�i
− 1
β

ln
∑

σ∈{−1,1}
e−βWi(σ) ∏

a∈∂i

e−βua→iσ

2 cosh (βua→i)
. (30)

Once again, combining these equations with the cavity equations, we get that, for
a ∈ ∂i,

P (σi = σ) ∝ exp

−βW (σi)− βσ
∑
b∈∂i

ub→i

 = exp [−βσ(ua→i + hi→a)] . (31)

So far, we have studied the cavity method applied to a spin system. Nevertheless, it
is easy to see that the cavity method is actually a quite general technique.

Basing ourselves on the cavity method, we can construct a message-passing algo-
rithm [23] for the solution of combinatorial optimisation problems that is often called
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belief propagation.

In analogy to the cavity method, suppose we have a model with N variables ~x =
{xi}i=1,...,N , and assume they have a joint probability of the form

µ(~x) = 1
Z

M∏
a=1

fa(~x∂a), (32)

where ~x∂a ⊆ ~x, and Z is a normalisation constant.

This type of probability measure can be represented by a factor graph characterised
by

Fµ = G(Vx,Vf ; E), |Vx| = N, |Vf | = M, E ⊆ Vx × Vf .

Similarly to the cavity method, we associate each function vertex a ∈ Vf to the
function fa(~x∂a), and each variable vertex i ∈ Vx to the variable xi. Now, we define on
each edge of this bipartite graph two functions, each accounting for each direction in
which the edge can be traversed.

For an edge e = (i, a), we define the messages vi→a(x) and νa→i(x), elements of the
same space as probability distribution functions. They satisfy the following normalisa-
tion conditions: ∑

i∈∂a
vi→a(x) = 1 ∀a ,

∑
a∈∂i

νa→i(x) = 1 ∀i . (33)

Just like we did when describing the cavity method, we can build some iterative
‘message-passing’ equations in which we update messages on an edge based on the in-
coming messages on the tail of the directed edge. These are completely analogous to the
cavity equations, and are called belief propagation equations.

Definition 13: Belief propagation (BP) equations

The belief propagation equations are, after t steps,

vt+1
i→a(x) '

∏
b∈∂i\a

νtb→i(x) , (34)

νt+1
a→i(x) '

∑
~x∂a, xi≡x

fa(~x∂a)
∏

j∈∂a, j 6=i
νtj→a(xj) . (35)

After T iterations, we can write

vTi (xi) '
∏
a∈∂i

νT−1
a→i (xi) . (36)
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Remark 21: Convergence and limiting distributions

When the factor graph is a tree, the BP equations converge regardless of the
initial conditions after at most T ∗ = diam(Fµ).

If v∗i (x) and ν∗i (x) are the limiting distributions, they are related to the marginal
distrubition corresponding to the variable on the site i as follows:

v∗i (xi) ≡
∑
xj 6=xi

µ(~x)

4.4 Belief propagation for the assignment problem

Let us look now at the RBMP defined on the weighted complete bipartite graph
KN,N = G(V,U ; E). Then, the cost function is

C[M ] := 1
N

∑
ij

mijwij , (37)

where M = (mij)ij is the matching matrix such that mij = 1 if the edge (vi, uj) is
in the matching and 0 otherwise, and wij is the weight assigned to the edge (vi, uj).

For a given matrix M , we can write a joint probability

µ(M) =
∏
ij

δ

(
N∑
i=1

mij , 1
)
δ

 N∑
j=1

mij , 1

 e−βN
−1mijwij

Z
(38)

for positive, real β.

The BP equations on the fixed point, provided that the cavity ansatz is still satisfied,
are

v(ij)→i(m) ' νj→(ij)(m)e−βN−1mwij , (39)

νi→(ij)(m) '
∑

{mkj}k 6=i

δ

m+
∑
k 6=i

mkj , 1

∏
k 6=i

ν(kj)→j(mkj) (40)

In order to take the relevant optimisation limit, i.e., β −→ ∞, let us define for each
oriented edge ~eij =

−−−−→
(vi, uj) of the original complete bipartite graph,

X(−→eij) := 1
β

ln
νi→(ij)(1)
νi→(ij)(0) and (41)

X(←−eij) := 1
β

ln
νj→(ij)(1)
νj→(ij)(0) (42)
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for the other orientation.

By applying this change of variable, we get the following modified BP equations at
finite β:

Xt+1(−→eij) = −1
β

ln
∑
k 6=i

exp
[
βwkj
N

+ βXt(←−eij)
]
, (43)

Xt+1(←−eij) = −1
β

ln
∑
k 6=j

exp
[
βwik
N

+ βXt(−→eij)
]
. (44)

Taking the limit β −→∞ of the equations above leads us to the min-sum algorithm
for the assignment problem:

Xt+1(−→eij) = min
k 6=i

[
wkjN

−1 −Xt(←−eij)
]
, (45)

Xt+1(←−eij) = min
k 6=j

[
wikN

−1 −Xt(←−eik)
]
. (46)

The criterion to select an edge for the perfect matching (i.e. the occupancy criterion)
is

X(−→eij) +X(←−eij) ≥ 0 . (47)

5 Weighted dimer coverings on the Aztec diamond: the
random bipartite matching problem

5.1 Setting up the problem

Let An be the bipartite Aztec diamond graph of order n defined as in Section 2.4,
i.e., with n nodes in each of the four outter diagonals, and with An = (Vred ∪ Vblue, E).

The aim of this project is to study the properties of the random bipartite matching
problem in the thermodynamic limit at finite β defined on the weighted An. The weights
{w(e)}e∈E are i.i.d. random variables, and on every instance of the problem, they are
drawn from the probability distribution ρ(w) = θ(w) e−w.

Let us define the cost function to be

C[M ] :=
∑
ij

mijwij , (48)

where M = (mij)ij is the occupancy matrix such that mij = 1 if the edge (vi, uj)
is in the matching and 0 otherwise, and wij is the weight assigned to the edge (vi, uj).
Notice that this definition only makes sense when we are looking at optimal solutions in
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Figure 6: This figure represents one instance of the RBMP on the Aztec diamond graph
of order n = 5 at T = 0. The edges in green are the ones that give the optimal cost in
that configuration.

the limit of T = 0.

We are particularly interested on the average of the marginals of the edges of An
over many realisations of the problem at finite β. The marginal of an edge is the proba-
bility that, when choosing a matching of An at random, the matching will include that
specific edge. By studying these particular probability distributions, one can see if a
frozen region emerges at finite T .

5.2 Methods

In order to find solutions and average properties of the RBMP that we are interested
in, we used the message-passing algorithm of belief propagation. Notice that, since the
Aztec diamond is not tree-like, we are using the loopy version of BP, a non-exact method,
but a ‘good enough’ approximation for general graphs.

Pictorically, in order to implement BP, what we did was introducing a red field going
from the red nodes to the blue nodes, and a blue field directed from blue nodes to red
nodes. These, and their update rules, are represented by the slightly modified version
of Eqns. 43 and 44:
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Xt+1(−→eij) = −1
β

ln
∑
k 6=i

exp
[
βwkj + βXt(←−eij)

]
,

Xt+1(←−eij) = −1
β

ln
∑
k 6=j

exp
[
βwik + βXt(−→eij)

]
.

Notice that in the factor graph of the An, the nodes are the factors, and the edges
are the variables. Then, the outline of the loopy BP algorithm is as follows:

1. Initialise the fields/messages arbitrarily.

2. Sweep all nodes/factors in random order.

3. Use incoming fields/messages on a factor/node to update the outgoing ones.

4. Iterate this method until convergence.

Convergence of the messages is not ensured for T > 0. Therefore, in order to monitor
convergence, we introduce the Bethe free energy [23]. It is calculated for every update
of BP until it converges:

F (β) = −1
β|V|

∑
v∈V

ln
∑
e∈∂v

e−β(w(e)−X(−→eij)) −
∑
e∈E

ln
(
1 + e−β(w(e)−X(−→eij)−X(←−eij))

) .

Notice that F (β → ∞) = C(M). The BP equations are stationary points of the
Bethe free entropy, i.e. −βF (β).

As a ‘sanity check’, we calculated the average optimal cost of the complete bipartite
graph with weight distribution ρ(w) = θ(w) e−w and made sure the value was the same
given by Parisi’s theoretical formula.

The algorithm was constructed on Python from scratch, and in order to construct
the graphs on Python, we used a module called NetworkX designed for graphical models.

5.3 Results

5.3.1 Bethe free energies

First, let us start by performing a consistency test. In Figure 7, we can see how
the average Bethe free energy grows as we increase the temperature for all the orders
n, which agrees with the physical interpretation – as we heat the system, there is more
free energy available for the system to use.
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Figure 7: Plot of the log of the average Bethe free energies for Aztec diamonds of
different orders vs temperature. The number of realisations was 100, except for n = 50
and n = 100, where the number of realisations was 10 due to time constraints.
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This consistency check, however, does not ensure the accuracy of the marginals. It
just ensures that the BP algorithm is indeed converging to some value(s).

5.3.2 Fixed n, varying T

In the Aztec diamond of order n, the Arctic Circle phenomenon emerges for T ≥ 5
(see Figure 8). However, when we plot the heatmap of the marginals for order n = 100,
as we increase the temperature (see Figure 9), it seems that the Arctic circle is starting
to form as a liquid phase in the shape of a square with round corners starts to arise.

It seems that the higher the order of the Aztec diamond, the greater the tempera-
ture needed for the marginals to converge to the limit shape of the arctic circle. Another
possibility would be that, because of the possible inaccuracy of BP in general graphs,
the algorithm breaks down for large n and gives the incorrect marginals.

A counter argument for the latter is that Figure 10 and 11 seem consistent with each
other in terms of limiting shapes.

As a curiosity, the heatmaps of the variance of the marginals for the Aztec diamond
of order n = 10 (see Figure 12) and n = 20 show a limiting shape in the interior region
that resembles a cross – an Aztec diamond inside an Aztec diamond.

35



5.3 Results 5 THE RBMP ON THE AD

Figure 8: Heatmap of the average marginals distribution of the Aztec diamond of order
40 (100 realisations) at T = 5. The diamond exhibits a frozen region around its edges and
and an inner liquid region in the shape of an inscribed circle. This is why in the outter
area the edges are either in red (very likely to be occupied) or in purple (very unlikely
to be occupied), and within the circle, the marginals attain more ‘neutral’ values.
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Figure 9: Heatmap of the average marginals distribution of the Aztec diamond of order
100 (10 realisations) at T = 0, 1, 5, 10, 20. The diamond starts to transition to an arctic
circle regime, but it seems that the temperatures are not high enough for the circle to
fully form. 37
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Figure 10: Probability that the marginal is less than x at different temperatures for the
Aztec diamond of order n = 100.

Figure 11: Probability that the marginal is less than x at different temperatures for the
Aztec diamond of order n = 40.
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Figure 12: Heatmap of the variance of the marginals of the AD of order n = 10 (100
iterations).
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5.3.3 Fixed T , varying n

Finally, we would like to address Figure 13. It is worth noting that, even though
for n = 50 and n = 100 only 10 realisations of the problem were made, the curve look
well-behaved, probably because of the self-averaging property as we increase n.

In Figure 13, it seems that the accumulative probability of the marginals tend to the
classical limit for all n as we increase n except for n = 100. This might be because of
what was mentioned before. A possibility is that, for n −→ ∞, we need to look at the
curves for higher T in order to get a clearer discontinuity that confirms the emergence
of a frozen region.

Figure 13: Plot of the probability that the marginals are less than x for different n, fixed
T = 20.

5.4 Discussion and conclusions

One key improvement of the project that could not be done due to time constraints
is checking how precise the marginals of the Aztec diamond in the results were. Loopy
Belief Propagation does not guarantee that the marginals in graphical models that are
not tree-like are exact. Therefore, one of the fitting next steps would be to check that the

40



6 SELF-ASSESSMENT COMMENTS

marginals given after running BP on the Aztec diamond graph are indeed exact. This
can be done by implementing the so-called Generalised Domino-shuffling algorithm
[11]. This is a remarkable result as it is capable of:

• Finding the cost of the matchings of a weighted Aztec diamond graph An;

• Computing the marginal of a particular edge being included in a randomly-chosen
matching of An;

• Randomly generating a perfect matching of An.

More computational power would have allowed us to perform a more exhaustive anal-
ysis of the random dimer covering problem on the Aztec diamond in the thermodynamic
limit. For instance, the Aztec diamond of order 40 still showed prevalence of finite size
corrections in its Bethe free energy, and nonetheless, it took several hours to run enough
instances of the optimisation problem.

Another matter that could have been more exhaustively studied (given more powerful
computational resources) is under which definite conditions the arctic circle appears on
the weighted Aztec diamond. Some open questions about this include:

• Is there a critical temperature for which the arctic circle arises?

• Is this critical temperature dependant on the size of the Aztec diamond?

• How does changing the probability distribution affect the appearance of the arctic
circle?

Further work on the weighted Aztec diamond could consist of studying excitations
of the model by cutting an edge and seeing how this affects the matchings depending
on the region where the edge is positioned. Criticality and comformality of the model is
definitely another direction that could be considered as next focus.

In conclusion, the random dimer covering problem on the Aztec diamond is a research
topic that still has a lot to offer given some of the counterintuitive and non-expected
results that we obtained. Creating a united front with mathematicians, physicists and
computer scientists would definitely contribute towards creating a ‘theory of everything’
of combinatorial optimisation, statistical mechanics and algorithms for graphical models
and assignment with faster and more powerful tools.

6 Self-assessment comments

1. How did Research Methods help me prepare for the project write-up?
In my particular case, having produced a manuscript like this for my undergrad, I
did not especially need the material on Prof Peter Sollich’s website. However, I did
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find it useful as a refreshment of past knowledge, and as a resource to check when-
ever in doubt. What helped me the most about Research Methods was attending
the talks and producing detailed notes, since these were related in a way to my
MSc thesis. Also, I found extremely helpful doing the critical analyisis presenta-
tion. A critical analysis on a paper is something that I had not done before, and
find like it is an essential skill to have, and also, it helped me understand better
some aspects of my MSc project beforehand.

2. Assessment according to marking guidelines

Mark (%)
Scientific quality 60
Breadth 70
Originality 60
Presentation and logical structure of the report 70

3. Some comments. In general I am happy with the presentation of my project.
However, I would have liked to add my personal touch by writing section about
applications of the problem in Biomathematics, since it is my favourite research
area. Talking about Voronoi diagrams was not enough to add an entire section,
and did not seem fitting given the main topic of the project.
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