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CHAPTER 1

Discrete-time Markov processes

Abstract. In this first chapter we will introduce the main subject of the module, namely
stochastic processes. We will focus then on a specific kind of process, discrete-time Markov
chains. Markov chains are prototypical Markovian stochastic processes that allow isolating
some crucial properties of Markovian processes. Our analysis will prepare the study of Markov
processes in continuous time, developed in the next chapter. As a possible reference, see
Chapter 6 of
Grimmet and Stirzaker, Probability and random processes, Oxford University Press, 2020.
A monograph dedicated to Markov chains is
Norris, Markov chains, Cambridge Series in Statistical and Probabilistic Mathematics, 1998.

1. Stochastic processes: fundamental definitions
Lecture 1

A stochastic process (SP) can be informally defined as a collection of random variables (Xt)t

taking value in some set Ω, called sample space. The elements in the collection depend on a
label t ∈ T, which we can think plays the role of “time”. We will assume that T ⊆ R. The set Ω
can be a discrete set (for example, Xt can represent the number of people in line at a post office
at time t) or continuous (e.g., Xt might be how much time we have to wait to arrive at the post
office at time t). For simplicity, we will start considering the case in which Ω ⊆ R, but it is easy
to generalise the definitions below to higher dimensional cases, e.g., Ω ⊆ Rd with d > 1. We will
denote Xt the stochastic process and x(t) an actual realisation of it.

The most basic classification of stochastic processes usually refers to the set T of possible
values of the “time” variables. We distinguish (see Fig. 1)

• discrete-time stochastic processes, if T is a finite or discrete set (for example, t ∈ N);
• continuous-time stochastic processes, if T is an interval (or the union of intervals) of

⊆ R.
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Figure 1. Example of a graph of discrete-time (left) and continuous-time
(right) stochastic process. Observe that a continuous-time stochastic process
is not necessarily continuous.
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2 1. DISCRETE-TIME MARKOV PROCESSES

The time-dependence of the random variable Xt naturally suggests introducing, in the case of
discrete valued SPs, the joint probability

(1.1) Pn[Xt1 = x1; . . . ;Xtn
= xn] ≡ Pn[{Xti

= xi}n
i=1]

that the SP X takes value xi ∈ Ω at time ti for i = 1, . . . , n. These joint probabilities satisfy
(1) Pn[{Xti

= xi}i] ≥ 0;
(2)

∑
xj∈Ω Pn[{Xti

= xi}i] = Pn−1[{Xti
= xi}i 6=j ];

(3)
∑

{xi}i
Pn[{Xti

= xi}i] = 1.
Similarly, in the case of continuous-values SP, we can introduce a joint probability density

(1.2) pn(x1, t1;x2, t2; . . . ;xn, tn) ≡ pn({(xi, ti)}n
i=1)

defined so that

(1.3) pn({(xi, ti)}n
i=1)

n∏
i=1

dxi = P[{Xti ∈ (xi, xi + dxi)}n
i=1].

Such densities clearly satisfy
(1) pn({(xi, ti)}i) ≥ 0;
(2)

∫
pn({(xi, ti)}i) dxj = pn−1({(xi, ti)}i 6=j);

(3)
∫
pn({(xi, ti)}i)

∏n
i=1 dxi = 1.

Averages of quantities involving an SP will in general depend on one or more values of t.
Let us focus on continuous-valued SPs: similar formulas can be obtained for discrete-valued SPs
just by replacing probability densities with probabilities and

∫
dx →

∑
x. So for example, the

expectation of a function f : Ω → R of Xt is in general time-dependent as

(1.4) E[f(Xt)]:=
∫
Ω

f(x)p1(x,t)dx and in particular E[Xt]:=
∫
Ω

xp1(x,t)dx.

More generally, we define the nth moment of the SP Xt as

(1.5) E

[
n∏

i=1
Xti

]
=

 n∏
i=1

∫
Ω

dxi xi

 pn({(xi, ti)}i)

The n = 2 case is particularly relevant and called autocorrelation function:

(1.6) C(t1, t2) = E[Xt1Xt2 ] =
∫∫

Ω×Ω

dx1 dx2 x1x2 p2(x1, t1;x2, t2)

The prefix auto is often used to distinguish from the case in which the correlation is computed
between two different SPs, e.g., considering E[Xt1Yt2 ] with Y different SP. If Xt1 and Xt2 are
independent, then E[Xt1Xt2 ] = E[Xt1 ]E[Xt2 ], hence a good way to measure correlations between
Xt1 and Xt2 is the connected correlator which subtract this contribution,

(1.7) ⟪Xt1Xt2⟫ := E[Xt1Xt2 ] − E[Xt1 ]E[Xt2 ]

and is zero by construction when Xt1 and Xt2 are independent. A positive value of the connected
correlator means that when Xt1 is above (below) its average value, Xt2 tends to be above (below)
its average as well. Conversely, Xt1 and Xt2 are negatively correlated if they tend to have opposite
trends. For t1 = t2 the connected correlator reduces to the time-dependent variance ⟪X2

t⟫ =: σ2
X.

Generating functions. — We can proceed generalising the concept of generating function
and characteristic function. Let us start with a reminder.
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 If X is a random variable, then its generating function is defined as
(1.8) GX(s) := E[sX].
This function has interesting properties. For example, if X and Y are independent random variables,
Z = X + Y has
(1.9) GZ(s) := E[sX+Y] = E[sX]E[sY] = GX(s)GY(s).
A special type of generating function is the moment generating function
(1.10) MX(k) := GX(eu) = E[euX],
which is such that ∂n

uMX(u)|u=0 = E[Xn] and allows therefore to easily compute all moments of X
(hence the name). The function MX does not always exist, and it is therefore convenient to consider,
instead, the characteristic function
(1.11) φX(u) := GX(eiu) = E[eiuX],
which is instead always well-defined. Also in this case, the (possibly infinite) moments are obtained
by derivation ∂n

uφX(u)|u=0 = inE[Xn]. Finally, the cumulant generating function is defined by taking
the logarithm of φX,
(1.12) K(u) := lnφX(u) = lnE[eiuX].
The quantities
(1.13) ⟪Xn⟫ := i−n∂n

uK(u)|u=0

are called cumulants of X.
As an SP depends on time, to generalise the concept of characteristic generating function we will

replace the scalar u with test function u(t) and the product uX with
∫
T
u(t)Xt d t. The characteristic

generating function will become a characteristic generating functional.

The characteristic generating functional is defined as the following functional of u(t)

(1.14) φX[u] = E
[
ei
∫
T

u(t)Xt d t
]
.

The notation φX[u] emphasizes that φX depends on the whole function u. If we expand in powers
of u, we get

(1.15) φX[u] =
∞∑

n=0

in

n!

[
n∏

i=1

∫
u(ti) d ti

]
E

[
n∏

i=1
Xti

]
Each moment of Xt can be therefore recovered as coefficient such expansion taking a functional
derivative

(1.16) E[Xt1 · · ·Xtk
] = δkφX[u]

δu(t1) · · · δu(tk)

∣∣∣
u=0

.

Similarly, we can define a cumulant generating functional as

(1.17) KX[u] := lnφX[u] =
∞∑

n=0

in

n!

[
n∏

i=1

∫
u(ti) d ti

]
⟪

n∏
i=1

Xti⟫

It is easy to see that the connected autocorrelation function is indeed the cumulant ⟪XtXt′⟫
appearing in this expansion, so that

(1.18) ⟪XtXt′⟫ = − δ2KX[u]
δu(t) δu(t′)

.
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1.1. Stationary processes. Knowing all pn of some SP Xt amounts to know the process
itself. Depending on the properties of the different pn, we can attempt a classification of SPs.
A particular important family is one of stationary processes. A SP is stationary if for all pn we
have

(1.19) pn({(xi, ti + τ)}n
i=1) = pn({(xi, ti)}n

i=1)

i.e., shifting all the times does not change the joint probability densities. We say then that Xt and
Xt+τ have the same distribution, writing Xt

d∼ Xt+τ . It follows in particular that p1(x, t) ≡ p1(x),
and therefore E[Xt] ≡ E[X] is time-independent. Similarly,

(1.20) p2(x1, t1;x2, t2) = p2(x1, 0;x2, t2 − t1),

i.e., it depends on the time difference t2 − t1 only, so that

(1.21) C(t+ τ, t) = E[Xt+τXt] ≡ C(τ) = C(−τ),

i.e., the autocorrelation is expressed in terms of a symmetric one-variable function C(τ) = C(−τ):
the important quantity is the time distance between the two observations Xt+τ and Xt, not which
one took place first or when they took place. If there exists a value τC such that C(τ) ' 0
for τ > τC , then τc is called autocorrelation time of the stationary SP. We briefly mention
here that, if Xt = (Xµ

t )d
µ=1 is a stationary, multicomponent SP, the autocorrelation function is

replaced with the correlation matrix Cµν(τ) = E[Xµ
t X

ν
t+τ ], where the diagonal elements represent

autocorrelations and off-diagonal elements are cross-correlations. In this case Cµν(τ) = Cνµ(−τ).

 Suppose that we have a SP Xt. Its energy is defined as

(1.22) E :=
+∞∫

−∞

X2
t d t

If we define the Fourier transform of the process

(1.23) X̂ω :=
+∞∫

−∞

Xt e−iωt d t

then Parseval’s identity tells us that

(1.24) E :=
+∞∫

−∞

X2
t d t = 1

2π

+∞∫
−∞

|X̂ω|2 dω.

The quantity |X̂ω|2 has the meaning of energy density in frequency, corresponding to the interval
(ω, ω + dω). However, it is hardly possible to work on the entire line, so a more accessible quantity
is

(1.25) X̂(T )
ω :=

+T∫
−T

Xt e−iωt d t and therefore |X̂(T )
ω |2 in place of |X̂ω|2.

Assume now that Xt is stationary. Its (rescaled) expected value is called power spectrum, and is
defined as

(1.26) S(ω) := lim
T →0

E[|X̂(T )
ω |2]

2T = lim
T →0

1
2T

+T∫
−T

d t
+T∫

−T

d t′ E[XtXt′ ] e−i(t−t′)ω =
+∞∫

−∞

C(τ) eiτω dω.

The relation between S(ω) and C(τ) is the so-called Wiener–Khinchin theorem.
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Equilibrium processes. — Equilibrium processes are stationary processes that also satisfy
dynamical reversibility, i.e.,

(1.27) Xt
d∼ XT −t ∀T ∈ R+,

where d∼ stresses equality in distribution. In other words, a forward trajectory is as likely as a
backward one through the same values of the SP.

Lemma 1.1. All equilibrium processes are stationary.

Proof. It is enough to observe that Xt
d∼ XT −t but also, for any τ , Xt+τ

d∼ X−t (it is enough to
choose T = τ in the definition above). Therefore Xt

d∼ Xt+τ for any τ . □

1
2 + ϵ

1
2 − ϵ

Note that the converse of the previous lemma is not true.
To appreciate the difference between equilibrium and stationarity
consider a system of one particle hopping between the adjacent
sites of a lattice ring with N sites, {1, . . . , N}, starting at random
in one of the N sites at t = 0. Its position at time t will be our
SP Xt. The particle hops clockwise with probability 1/2 − ϵ and
counterclockwise with probability 1/2+ϵ. The hopping probability does not depend on time t and
it is evident that the starting time of the experiment is not relevant: the process is stationary.
However, P[Xt = i;Xt+1 = i + 1] 6= P[Xt = i + 1;Xt+1 = i]: the process is not an equilibrium
process unless ϵ = 0 and, if for example ϵ > 0, the particle will mostly flow in the counterclockwise
direction.

Ergodic processes. — In practical applications, averaging over all possible realisations of
an SP X, is simply not possible. If x(t) is the outcome of an experiment corresponding to the SP
Xt, this would require indeed to run the experiment a large number of times to average over all
x(t). Instead, the time average of the single instance x(t) of Xt can be more easily accessible. For
an important class of stationary processes, i.e., ergodic processes, such information (if available
for long enough times) is enough to recover the averages over the measure of Xt. To be more
precise, suppose that we compute

(1.28) x(t):= lim
T →+∞

1
T

T/2∫
−T/2

x(t)dt, x(t)x(t+τ):= lim
T →+∞

1
T

T/2∫
−T/2

x(t)x(t+τ)dt.

Then, for an ergodic process, the following equalities hold:

(1.29) x(t) = E[Xt], x(t)x(t+ τ) = E[XtXt+τ ] = C(τ).

In other words, in ergodic processes, the ensemble average is equivalent to the time average over
an arbitrarily large time T , which is then allowed to become infinite. Intuitively, this suggests
that in ergodic processes if we partition a trajectory x(t) in time intervals that are long enough,
the obtained “pieces” have the same properties of different sampling of the SP Xt, see Fig. 2 for
an example.

2. Finite Markov chains Lecture 2
2.1. Markov processes. Suppose that the SP Xt takes values in a finite or countable space

Ω. We might assume that we know the value it takes in our observation at some times t1, . . . , ts,
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Figure 2. We represent here some realisations of two stationary processes, Xt

and Yt, in discrete time t ∈ N. Both these processes are constructed from two
other independent and stationary processes: a fair-coin toss, Ct ∈ {−1, 1}, where
we associated 1 to head and −1 to tail, and a fair-dice toss Dt ∈ {1, 2, . . . , 6}.
The process Xt is obtained as Xt = C1Dt: we toss a coin at the very beginning,
and we assign a sign, depending on the outcome, to a sequence of dice toss. The
process Yt instead is obtained by tossing the coin at each dice toss to decide,
at each step, the sign, so Yt = CtDt. It is intuitive that Xt is not ergodic. For
example, E[Xt] = E[Dt]E[Ct] = 0, whilst on a single trajectory Xt = ±7/2, with
sign depending on the realisation. On the other hand, Yt is ergodic: for example,
E[Yt] = Yt = 0.
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let us say that Xti
= xi for i = 1, . . . , s. Using Bayes theorem, we can write the conditional

probability that the SP will take values Xti = xi for i = s+ 1, . . . , n as

(1.30) Pn−s|s[{Xti = xi}n
i=s+1|{Xti = xi}s

i=1] = Pn[{Xti
= xi}n

i=1]
Ps[{Xti = xi}s

i=1]
.

Directly from Bayes theorem, we have that, for any time t′ we have in particular

(1.31) P1[Xt = x] =
∑
y∈Ω

P1|1[Xt = x|Xt′ = y]P1[Xt′ = y].

Assuming now t1 < t2 < · · · < tn, a Markov process satisfies the following Markov property
(1.32) P1|n−1[Xtn = xn|{Xti = xi}n−1

i=1 ] = P1|1[Xtn = xn|Xtn−1 = xn−1].

The Markov property expresses that for a Markov process, the conditioned probability of tran-
sition depends only on the last known value of X and not on the previous history of the system.
In other words, if the present state of the system is known, we can determine the probability of
any future state without reference to the past. We may say that Markov processes have “short”
memory, although the attribute “memoryless” is often used.

Interestingly, in Markovian processes only P1|1[Xt = x|Xt′ = y] and P1[Xt = x] matters: this
can be seen observing that, for any n ≥ 2, Pn[{Xti = xi}n

i=1] can be written in terms of this two
quantities. For example, for n = 3, assuming t1 < t2 < t3, we have

P3[Xt1=x1;Xt2=x2;Xt3=x3]=P1|2[Xt3=x3|Xt1=x1;Xt2=x2]P2[Xt1=x1;Xt2=x2]
=P1|1[Xt3=x3|Xt2=x2]P1|1[Xt2=x2|Xt1=x1]P1[Xt1=x1],

(1.33)

and, for general n, assuming t1 < t2 < · · · < tn,

(1.34) Pn[{Xti
= xi}n

i=1] =

(
n∏

i=2
P1|1[Xti

= xi|Xti−1 = xi−1]

)
P1[Xt1 = x1].

The relation (1.33) can be useful to obtain an important equation for Markov processes. Let us
integrate it over x2 and divide both sides by P1[Xt1 = x1]

(1.35) P1|1[Xt3=x3|Xt1=x1]=
∑

x2∈Ω

P1|1[Xt3=x3|Xt2=x2]P1|1[Xt2=x2|Xt1=x1], t1<t2<t3.

This equation is called Chapman–Kolmogorov equation and states that the probability of a path
x1 → x2 → x3 factorises in the product of the probabilities of the individual transitions x1 → x2
and x2 → x3.

A Markov process is stationary if P1[Xt = x] is actually independent on time and P1|1[Xt2 =
x2|Xt1 = x1] depends only on the time interval t2 − t1, i.e.
(1.36) P1|1[Xt2 = x2|Xt1 = x1] = P1|1[Xt2−t1 = x2|X0 = x1].

If P1 depends on time but (1.36) holds, the Markov process is said to be homogeneous.

 Explain why equation (1.42) does not hold for non-Markovian processes.

 Similarly to what we have discussed for the case in which Ω is countable or finite, we can repeat
our discussion for the case in which Ω has the cardinality of the continuum. The main difference is
that probabilities will be replaced by probability densities and, for example, Bayes theorem takes the
form

(1.37) pn|s({(xi, ti)}n
i=s+1|{(xi, ti)}s

i=1) = pn({(xi, ti)}n
i=1)

ps({(xi, ti)}s
i=1) .
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The Markov property takes then the form
(1.38) p1|n−1(xn, tn|{(xi, ti)}n−1

i=1 ) = p1|1(xn, tn|xn−1, tn−1).

We have, of course, that p1|1(x2, t2|x1, t1) ≥ 0; moreover
∫

Ω p1|1(x2, t2|x1, t1) dx2 = 1, expressing
the fact that the system has to go somewhere with probability 1, and finally, directly from Bayes
theorem,

(1.39) p1(x2, t2) =
∫
Ω

p1|1(x2, t2|x1, t1)p(x1, t1) dx1.

For a Markov process, the joint probabilities for n ≥ 3 are all expressed in terms of p1 and p1|1. For
example, for n = 3 we have

(1.40) p3(x1, t1;x2, t2;x3, t3) = p1|2(x3, t3|x1, t1;x2, t2)p2(x1, t1;x2, t2)
= p1|1(x3, t3|x2, t2)p2(x2, t2|x1, t1)p1(x1, t1).

For general n the general crucial result holds

(1.41) pn({(xi, ti)}n
i=s+1) =

n∏
i=2

p1|1(xi, ti|xi−1, ti−1) p1(x1, t1).

Taking relation (1.40), integrating it over x2 and dividing both sides by p1(x1, t1) we obtain the CK
equation

(1.42) p1|1(x3,t3|x1,t1)=
∫

dx2p1|1(x3,t3|x2,t2)p1|1(x2,t2|x1,t1), t1<t2<t3.

2.2. Finite Markov chains. One of the simplest examples of a Markov process is that of a
Markov chain. A discrete time Markov chain is a discrete-time Markov process on some countable
or finite space Ω. In this Section, we will limit for simplicity to Markov chains with in which Ω
is a finite set, called finite Markov chains. This is not essential but removes distracting technical
complications. Let us assume in particular that that X can take on values in Ω = {1, 2, . . . , N}
and time is measured in units such that t takes values t ∈ N. Then

(1.43) P1[Xn = i] =
N∑

j=1
P1|1[Xn = i|Xn−1 = j]P1[Xn−1 = j]

The theory of Markov chains is highly developed for homogeneous chains and we shall mostly be
concerned with these. Defining then
(1.44) Qij := P1|1[Xn = i|Xn−1 = j] = P1|1[X1 = i|X0 = j]

this is n-independent. Since the system has to move to some state from any state j we have, for
all j

∑N
i=1 Qij = 1. We can construct a transition matrix Q of transition probabilities

(1.45) Q =

Q11 Q12 . . .
Q21 Q22 . . .

...
...

...

 .

Each matrix can have a graphical representation, in which, if each state i is associated with a
node, a directed edge i → j is associated with Qij . For example, the following matrix with N = 4

Q =


1 Q12 0 0
0 Q22 Q23 0
0 0 Q33 Q34
0 0 Q43 Q44
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can be associated with the graph

(1.46)

1

2

3

4

Q12

Q43

Q34 Q23

1

Q22

Q33

Q44

The matrix Q is a stochastic matrix: its elements are non-negative by construction and all its
columns sum to one. In our convention, Qij is the probability of a transition from state j (column
suffix) to i (row suffix).

The problem of finding the probability that after n steps the system is in a given state can
be reduced to calculating entries in the n-th power of the transition matrix Q. Let us introduce
the column vector of state occupation probabilities at time t,

(1.47) |P (t)〉 ≡

P1(t)
...

PN (t)

 where Pi(t) := P[Xt = i].

We can write the evolution of this vector for one step from t1 = t− 1 to t2 = t as

(1.48) |P (t)〉 = Q|P (t− 1)〉 ⇔ Pi(t) =
∑

j

QijPj(t− 1).

Iterating the very same equation,

(1.49) |P (t)〉 = Qt|P (0)〉,

with Q0 ≡ I being the identity matrix. Consequently, the process can be described completely
by its initial probability vector |P (0)〉 and the transition matrix Q. For example, the probability
of the system taking a specific path of states is

(1.50) Pn[{Xti
= ji}n

i=1] =

(
n∏

k=2

Qjk,jk−1

)
Pj1(0).

If the system starts in any given state j, then Pi(0) = δij and Pk(t) = (Qt)kj . Finally, the
simple fact that Qt+t′ = QtQt′ expresses the Chapman–Kolmogorov equation for homogeneous
Markov chain.

What we have said refers to the homogeneous case. In the non-homogeneous case the tran-
sition probability P1|1[Xt = i|Xt′ = j], t > t′, will depend on both t and t′ and not just on t− t′.
In this case, we write

(1.51) Qij(t′, t) = P1|1[Xt′ = i|Xt = j].

In particular, the jump probabilities Qij(t + 1, t) will depend on the time t. The Chapman-
Kolmogorov equation reads in this case

(1.52) Q(t, r) = Q(t, s)Q(s, r) r < s < t.
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2.3. Definitions based on the accessibility of states. Depending on the accessibility
of the states in Ω in a Markov chain, different kinds of definitions can be given and are used
in the literature. Looking at the diagram of a Markov chain, such as the one in (1.46), we can
identify paths, closed sets, and absorbing states.

We say that there is a path i → j if ∃n ≥ 0 such that (Qn)ij > 0. On the other hand, a
path does not exist if 6 ∃n ≥ 0 such that (Qn)ij > 0. Two states i and j are communicating,
there exists a path i → j and a path j → i, i.e., given sufficient time we can always get from i
to j and from j to i: we write in this case i ↔ j.

 Example In the following simple Markov chain

(1.53)
12

3

Q12

Q23

1

Q22

Q33

there is a path 3 → 1 but there is not a path 1 → 3: so 1 and 3 are not communicating.

A subset Ω0 ⊂ Ω is closed if ∀i ∈ Ω0 and ∀j ∈ Ω \ Ω0, i 6→ j, i.e., starting from a state inside
Ω0 the system cannot ever reach any state outside Ω0. In other words, (Qn)ij = 0 for all n ≥ 0 if
i ∈ X0 and j /∈ Ω0. If Ω0 contains a single element, such element is said to be an absorbing state.
If, for each pair i, j ∈ Ω0, closed set of states, we have i ↔ j, then Ω0 is a closed irreducible subset
(or closed communicating class): every element inside Ω0 can be accessible from any other, and
the system cannot go out of Ω0 once inside.

 Example In a chain of the form

12

3 64

5

the gray nodes belong to a closed irreducible subset of Ω: if you can start from a gray node, you
cannot reach any white one, but you can get to any other gray node.

We can measure the periodicity of each state i, defined as

(1.54) τi := gcd{t : (Qt)ii > 0}.

If τi > 1, then i is periodic, otherwise it is aperiodic. A periodic Markov chain is a chain with a
periodic state, otherwise, it is said to be aperiodic.

 Example Consider for example the chain

(1.55) Q =
(

0 1
1 0

)
⇔ 12

1

1
.

The state 1 in the chain (1.55), for example, has τ1 = 2. Similarly τ2 = 2. But if we consider for
example, for ϵ ∈ (0, 1),

(1.56) Q =
(

0 1 − ϵ
1 ϵ

)
⇔ 12

1 − ϵ

1ϵ
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then τ1 = 1: indeed, for any t ≥ 2, the sequence of states 1 →
t−1 times in 2︷ ︸︸ ︷
2 → · · · → 2 → 1 has finite probability

to happen (to be precise, it has probability ϵt−2(1 − ϵ)), and the greatest common divisor of all t ≥ 2
is 1: the state is aperiodic.

Periodic systems are usually characterised by the presence of eigenvalues λ = −1.There is
an interesting property of periodicity, stated by the following theorem.

Theorem 2.1. Given two states i and j of a Markov chain, if communicating they have
the same period, i.e.,
(1.57) i ↔ j ⇒ τi = τj .

Proof. If i ↔ j, then there exists t > 0 such that (Qt)ij > 0 and a t′ > 0 such that (Qt′
)ji > 0.

Now

(1.58) P1|1[Xt+t′+t0 = i|X0 = i] =

=
∑

k,k′∈Ω

P1|1[Xt+t′+t0 = i|Xt′+t0 = k]P1|1[Xt′+t0 = k|Xt′ = k′]P1|1[Xt′ = k′|X0 = i]

≥ P1|1[Xt+t′+t0 = i|Xt′+t0 = j]P1|1[Xt′+t0 = j|Xt′ = j]P1|1[Xt′ = j|X0 = i] = (Qt)ij(Qt0 )jj(Qt′
)ji.

This equation must hold for any t0 such that (Qt0 )jj > 0. In particular, it holds for t0 = 0 and
t0 = τj , the smallest possible time the system can take to come back to j after leaving j. But then,
for t0 = 0, t + t′ must be divisible by τi. By picking t0 = τj , the smallest possible nonzero value we
can use, this fact implies that also τj must be divisible by τi. If we repeat the exact same operation
starting and ending in j, we find that τi must be divisible by τj . So τi = τj . □

Reducible and irreducible Markov chains. — In an irreducible Markov chain, ∀ i, j ∈ Ω,
∃tij > 0: (Qt

ij)ij > 0. This means that all pairs of states are communicating: one can go from
any state in Ω to any other state in Ω in a finite number of steps. This also means, by Theorem
2.1, that all states have the same period τ . However, there is not necessarily a time that makes
all the entries of the transition matrix positive (as in ergodic chains), meaning that some states
may only be reached at certain times. Irreducibility is a weaker condition than regularity: all
regular Markov chains are irreducible while not all irreducible Markov chains are regular. Non-
irreducible Markov chains are called reducible.

 Example An example of an irreducible chain which is not regular is given by a transition matrix
of the type in (1.55),

(1.59) Q =
(

0 1
1 0

)
⇔ 12

1

1
.

In this case Q2m+1 = Q and Q2m = I. However there is not n for which Qn has all entries non-zero:
the chain is not regular, as we will see below.
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As an example of a reducible chain, consider

(1.60) Q =

(1 Q12 0
0 Q22 Q23
0 0 Q33

)
⇔

12

3

Q12

Q23

1

Q22

Q33

It is reducible as, if the system starts in 1, it cannot escape from it. Note that the state 1 is absorbing.
A Markov chain has an absorbing state if one or more columns of the transition matrix contain all
zeros except for the diagonal element, which must be one.

Reducible chains are also matrices in the form

(1.61) Q =
(
Q1 0
0 Q2

)
For example, this corresponds to a structure like

(1.62)
12

3 54

67

Let Q1 being s × s and Q2 being (N − s) × (N − s). This chain has two sets of dynamically
separated states, Ω1 and Ω2. Hence, it will have two steady-states, |Π1〉 = (Π1, . . . ,Πs, 0, . . . , 0)>

and |Π2〉 = (0, . . . , 0,Πs+1, . . . ,ΠN )>. Which one is reached, depends on whether the system is
initialised in Ω1 or Ω2, corresponding to two components of the graph. As the name “reducible”
suggests, this chain can, in fact, be reduced to two different Markov chains, with transition
matrices Q1 and Q2, respectively.

 Example The chain considered in (1.55) is an example of a periodic chain, as the system can
only return to state 1 at even times Qn

11 > 0 for n = 2, 4, . . . .

Regular Markov chain. — In a regular Markov chain ∃t > 0: (Qt)ij > 0 ∀ i, j ∈ Ω.
Regular Markov chains are sometimes said to be ergodic. Note that if this property holds for
some t ≥ 0, it will hold for any t′ ≥ t. This property means that after a finite number of
iterations, there is a non-zero probability for the system to be in any state, irrespective of the
initial state i. This means that regular Markov chains are irreducible and aperiodic, i.e., they
are the proper subset of irreducible chains with τ = 1.

Reducible

Irreducible Regular Aperiodic subset of irreducible chains
Lecture 3

2.4. Steady-state. We define stationary distribution (sometimes for brevity steady state)
of the Markov chain (1.48) a vector |Π〉 of probabilities that does not evolve under the action of
Q, i.e.,

(1.63) |Π〉 = Q|Π〉 Πi ≥ 0 ∀i
∑

i

Πi = 〈1|Π〉 = 1.

In other words, Π is the right eigenvector of the stochastic matrix Q, associated with the eigen-
value λ = 1 with (non-negative) entries normalised to one and represents a time-independent
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solution of the Markov chain equation (1.48). It is very important to note that the fact that all
the column sums of a stochastic matrix are unity can be expressed in matrix notation by

(1.64) 〈1|Q = 〈1|,

with 〈1| is the row vector with all entries equal to 1. This means that 〈1| is always a left
eigenvector of Q, and λ = 1 is always an eigenvalue.

This also implies that a steady-state always exists: if a unit eigenvalue exists then the
corresponding right eigenvector is the steady-state. However, the steady state may not be unique
and convergence to it may not be guaranteed. We will see in later sections the conditions under
which conditions a finite Markov chain converges to a unique steady-state.

For later reference, we note that multiplying each side by Q from right, we have 〈1|Q2 =
〈1|Q = 〈1| and in general 〈1|Qn = 〈1|, so Qn is also a stochastic matrix for each integral n.

Probability current. — The net probability current Ji→j from any state i ∈ Ω to any state
j ∈ Ω in the stationary state |Π〉 of a Markov chain is defined as

(1.65) Jj→i = QijΠj −QjiΠi.

The current is by definition anti-symmetric under permutation of i and j, Ji→j = Jj→i. Since
Πi is the probability of the system to be in state i, and Qji the likelihood that it subsequently
moves from i to j, QjiΠi is the probability that we observe the system moving from i to j. With
multiple copies of our system evolving with the same Markov chain, it would be proportional to
the number of observed moves from i to j. Thus Ji→j represents the net balance of observed
transitions between i and j in the stationary state; hence the term ‘current’. If Ji→j > 0 there
are more transitions i → j than j → i; if Ji→j < 0 there are more transitions j → i than i → j.
Conservation of probability implies that the sum over all currents is always zero:

(1.66)
∑

ij

Ji→j =
∑

ij

(
QjiΠi −QijΠj

)
=
∑

i

Πi −
∑

j

Πj = 0.

Detailed balance. — Stationarity implies that
∑

j Ji→j = 0 (no net flow of probability
outgoing from i). If we have that

(1.67) Ji→j = 0 ⇐⇒ QjiΠi = QijΠj ∀i, j,

we say that there is detailed balance. This is a very strong condition. Detailed balance implies
stationarity: if Q and |Π〉 are in detailed balance, then |Π〉 is the steady-state probability.
Indeed

(1.68)
∑

j

QijΠj =
∑

j

QjiΠi = Πi.

However, detailed balance is a stronger condition than stationarity: it implies, in addition to
stationarity, dynamical reversibility, i.e., equilibrium. If X is a Markov chain with transition
matrix Q and steady-state |Π〉, detailed balance makes the probability of a forward path i0 →
i1 → ... → iN at stationarity, equal to the probability of the backward path iN → ... → i1 → i0

(1.69) P[X0 = iN ;X1 = iN−1; . . . ;Xn = i0]
= Qi0i1 . . . QiN−1iN

ΠiN
= Qi0i1 . . . QiN−2,iN−1ΠiN−1QiN iN−1

= · · · = Πi0Qi0i1 . . . QiN−1iN
= P[X0 = i0;X1 = i1; . . . ;Xn = iN ].

If N = 2, i.e., X can take only value {1, 2}, and since Ji→i = 0 by definition, the condition for
stationarity,

∑
j Ji→j = 0 ∀i, and the one for detailed balance Ji→j = 0 ∀ i 6= j, coincide, hence

any 2-state Markov chain allowing a stationary state automatically satisfies detailed balance.
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Detail balance is very important in physical simulations. Markov chains used to model closed
physical many-particle systems with noise are usually of the detailed balance type, as a result of
the invariance of Newton’s laws of motion under time reversal t → −t.

2.5. Eigenvalues and eigenvectors of stochastic matrices. We have seen that calcu-
lating the probability that the Markov chain is in a given state after n steps, normally involves
calculating entries in the n-th power of the transition matrix. This is best done by using a
spectral representation of the transition matrix, i.e., a decomposition of the matrix based on
eigenvalues and eigenvectors. For |P (t)〉 to remain well-defined for t → ∞, it is vital that the
eigenvalues are sufficiently small.

The matrix Q is in general not a symmetric matrix, therefore the right and left eigenvectors
will be different and complex-valued. The left and the right eigenvector problems are

Q|ψa〉 = λa|ψa〉(1.70)
〈ϕb|Q = λb〈ϕb|(1.71)

with |ψa〉, 〈ϕb| ∈ CN \ {0} and λµ, λν ∈ C. Much can be extracted from the two defining
properties Qij ≥ 0 ∀i, j and

∑
i Qij = 1 ∀j alone. Note that eigenvectors |ψa〉, 〈ϕb| of Q need

not be probabilities in the sense of |P 〉, as they could have negative or complex entries. A series
of general facts can be stated, stemming directly from basic linear algebra.

Lemma 2.2. The sets of left- and right- eigenvalues of Q are identical, and, moreover,
right and left eigenvectors are biorthogonal. Finally, it is possible to expand the matrix Q in
terms of its left and right eigenvectors as

(1.72) Q =
∑

a

λa|ψa〉〈ϕa|.

Proof. Equations (1.70) and (1.71) give det[Q − λRI] = 0 for the right eigenvalues λR and
det[Q† − λLI] = det[(Q− λLI)†] = det[Q− λLI] = 0 for the left eigenvalues λL respectively. These
are the same equation for any Q, involving a polynomial of degree N , and have therefore the same
set of N solutions {λa}N

a=1.
Multiplying (1.70) by 〈ϕb| and (1.71) by |ψa〉 and subtracting, we find (λa − λb)〈ϕb|ψa〉 = 0, so
〈ϕb|ψa〉 = 0 if λa 6= λb. If 〈ϕa|ψa〉 6= 0 (condition ensured when the set of eigenvectors of Q is
complete), we can scale these vectors so that 〈ϕb|ψa〉 = δab and (equivalently)

∑
a

|ψa〉〈ϕa| = I.
From the fact that 〈ϕa|Q = 〈ϕa|λa if we tensor-multiply by |ψa〉 and sum over a using the fact that∑

a
|ψa〉〈ϕa| = I, we obtain the formula above. The result also implies that

(1.73) Qn =
∑

a

λn
a |ψa〉〈ϕa|.

□

Lemma 2.3. All eigenvalues λ of stochastic matrices Q obey
(1.74) |λ| ≤ 1.

Proof. This property is the first one which is specific to a stochastic matrix. Consider the
right eigenvalue equation, λa|ψa〉 = Q|ψa〉. Then we can write

|λa|
∑

i

|ψa
i | =

∑
i

|λaψ
a
i | =

∑
i

∣∣∣∣∣∑
j

Qijψ
a
j

∣∣∣∣∣ ≤
∑

i

∑
j

|Qijψ
a
j | =

∑
i

∑
j

Qij |ψa
j | =

∑
j

|ψa
j |.

Since |ψa〉 is assumed to be nonzero, we know that
∑

i
|ψa

i | 6= 0 and hence |λa| ≤ 1. □
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We will soon go come back to these results when discussing the spectral properties of irre-
ducible Markov chains. From now on, we will order the eigenvalues in such a way that λ1 = 1
and

1 = |λ1| ≥ |λ2| ≥ · · · ≥ |λN |.
As anticipated, the fact that 〈1|Q = 〈1| implies that 〈1| is always left eigenvector with eigenvalue
λ = 1. Therefore, there must exist at least one right eigenvector with λ = 1. Due to the
biorthonormality and the fact that 〈1| is left eigenvector with eigenvalue 1, right eigenvectors
corresponding to eigenvalues λ 6= 1 of stochastic matrices Q obey

(1.75) 〈1|ψa〉 = 0.

2.6. Convergence to a stationary state. It is often very relevant to study the behaviour
of the system after a large number of transitions t → ∞ and to see if it retains some memory
of its initial state, or if the asymptotic behavior is independent of it. Once again, to investigate
this problem, we need to analyse the transition matrix Q. A fundamental theorem, the Perron–
Frobenius theorem, helps us in extracting the information we need. Let us state it in a slightly
more general form, and then adapt it to our case.

Theorem 2.4 (Perron–Frobenius). Let Q be a stochastic matrix of an irreducible Markov
chain with periodicity τ ≥ 1. Then

• the τ roots of the identity, λk = e2πi k−1
τ , k = 1, . . . , τ , are eigenvalues of Q, and in

particular λ1 = 1.
• the remaining eigenvalues λτ+1, . . . , λN have |λj | < 1;
• there exists a unique vector |Π〉 with strictly positive entries such that 〈1|Π〉 = 1

and Q|Π〉 = |Π〉

As for a regular Markov chain τ = 1, this means that regular Markov chains have only
one eigenvalue with |λ1| = 1. We know the corresponding left eigenvector 〈ϕ1| = 〈1|, and
the right eigenvector, normalised to one, is the steady state |ψ1〉 = |Π〉, that, by the Perron–
Frobenius theorem, has all its components non-negative and is therefore, once normalised, a
proper probability vector. Then (1.73) can be rewritten as

(1.76) Qn = |Π〉〈1| +
∑
a>1

λn
a |ϕa〉〈ψa|.

Since |λa| < 1 ∀ a 6= 1, in the limit n → ∞ we obtain a unique value

(1.77) Qn n→+∞−−−−−→ |Π〉〈1| =


Π1 Π1 . . . Π1
Π2 Π2 . . . Π2
...

ΠN ΠN . . . ΠN

 .

It is easy to see that |Π〉〈1|Q = |Π〉〈1| and that, for any |P (0)〉, |Π〉〈1|P (0)〉 = |Π〉 (because
〈1|P (0)〉 = 1).

 Show that indeed |Π〉〈1|Q = |Π〉〈1|.

In particular, under the hypotheses above, the solution of the Markov chain converges to |Π〉
independently from the initial state. Indeed

(1.78) lim
t→+∞

|P (t)〉 = lim
t→+∞

Qt|P (0)〉 = |Π〉〈1|P (0)〉 = |Π〉.
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We can actually be even more precise. Indeed, using the spectral representation of Qt one has

(1.79) |P (t)〉 = Qt|P (0)〉 = |Π〉 +
∑
a>1

λt
a|ψa〉〈ϕa|P (0)〉.

For large t, the sum is dominated by the second largest (in absolute value) eigenvalue λ2, so that

|Pi(t) − Πi| ∼ |λ2|t = e−t ln 1
|λ2| = e− t

tr .

Hence the relaxation time tr is given by the second largest eigenvalue

tr = − 1
ln |λ2|

Note that for λ2 → ±1, τ → ∞. For a Markov chain to converge to a unique steady-state, it has
to be irreducible and aperiodic. This defines a regular chain.

 Example We consider an interesting and important application of Markov chains to random
walks on graphs. There are many processes that can be modeled in this way. A remarkable example
is PageRank, the algorithm used by Google Search to rank websites in their search engine results.

A graph (or network) is defined by N ‘nodes’, labeled by i = 1, . . . , N and a set of ‘links’ specified
by a connectivity matrix, also called adjacency matrix

(1.80) A =

A11 · · · A1N

...
. . .

...
AN1 · · · ANN


such that Aij = 1 if there is a link between i and j, and zero otherwise. For example,

A =

0 1 0 1
0 1 0 1
0 1 0 0
0 1 1 0

⇔

1

2

3

4

If links are undirected, the adjacency matrix is symmetric and A> = A. From now on, we
will consider undirected graphs, without loops, i.e., Aii = 0 ∀i. We define the degree of a node i
as ki =

∑
j
Aij , the number of the ‘neighbours’ of i, i.e., nodes linked to i. The degree sequence

|k〉 = (k1, k2, . . . , kN ) specifies the degrees of all the nodes in a graph.
We now consider a random walker, who takes steps along the links of a non-directed network

A, at discrete times t = 1, 2, . . ., according to the following probabilistic rule: at each time step,
the walker moves from the site j it currently occupies, to a new site i selected uniformly at random
among the neighbours of j. We denote Pi(t) as the probability to find the walker on the site i at time
t. Translating the dynamical rule into equations, we have

Pi(t+ 1) =
∑

j

Aij

kj
Pj(t)

which describes a Markov chain. If D is the diagonal matrix having Dij = k−1
i δij , the transition

matrix of the chain is
Q = AD−1.

It is easy to see that this is indeed a stochastic matrix, i.e.
∑

i
Qij = 1 for all j. The node probability

vector |P (t)〉 = (P1(t), . . . , PN (t))> then evolves according to the probabilistic rule |P (t + 1)〉 =
Q|P (t)〉 for Markov chains. In addition to the adjacency matrix, which defines the graph connectivity,
one can define another important matrix, the so-called Laplacian

L = D −A
The stationary probability vector |Π〉 can be expressed in terms of the eigenvectors of the Laplacian
matrix L associated to zero eigenvalues. From its defining equation |Π〉 = Q|Π〉 = AD−1|Π〉, setting
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|x〉 = D−1|Π〉, we have
D|x〉 = A|x〉 ⇔ (D −A)|x〉 = L|x〉 = 0.

It is easy to show that |1〉 is always an eigenvector of the Laplacian associated to eigenvalue zero.
One can also show that the number of zero eigenvalues of the Laplacian is equal to the number of
disconnected components in the graph. Hence, if the graph is connected, there exists only one zero
eigenvalue. In this case, the stationary distribution is unique and equal to

|Π〉 = cD|1〉
where c is a normalization constant. Therefore, at stationarity, the random walker visits each site
with probability

Πi = ki∑
j
kj

i.e., nodes with higher degrees ki are visited more frequently.

2.7. Accounting for memory. Markov processes are “memoryless”, as for these systems,
the future trajectory depends only on the current configuration and not on the past trajectory.
This may seem a big limitation, as many systems may retain a longer memory. However, Markov
chains can also be used to model systems with longer, but finite memory: the general strategy
to do so is to augment sufficiently the dimension of the state-space. To illustrate this, consider
the following example.

 Example Assume that London’s weather can be modeled in terms of a stochastic variable X
taking values in the set Ω = {Sun,Rain} and that X is updated daily according to the probabilistic
rules:
(i): Tomorrow’s weather is like today with probability 0.5
(ii): If the weather has stayed the same for two days in a row, it will change with probability 0.7.
It is clear that for this system (using the abbreviation S for Sun and R for Rain)

P1|2[Xn = S|Xn−1 = S;Xn−2 = R] 6= P1|2[Xn = S|Xn−1 = S;Xn−2 = S]
so that the Markovian property is apparently lost. However, one can retrieve it by duplicating the
dimensionality of the stochastic variable

X → X = (Y,Z)
so that one component, e.g. Y, accounts for the current configuration, and the other, Z, for the
configuration at the earlier time-step (in this example, the day before). In this way, we have enlarged
the state-space from

Ω = {S,R} → Ω′ = Ω × Ω.
In the enlarged state-space, the dynamics is Markovian, as given the system’s configuration of today
and yesterday, the future configuration is independent of the past.

This example illustrates that an initially non-Markovian process, where transition probabil-
ities depend on how long the current state has been on, can be modeled as a Markovian process
by augmenting sufficiently the state space. Obviously, this strategy does not work for processes
that are more drastically non-Markovian such as self-avoiding random walks, in which a particle
moving on a lattice cannot visit a site where it has already been. For these processes, the whole
history is relevant, hence the state-space would have to be made larger and larger as time elapses,
which becomes unfeasible at some point.

3. Markov chain MonteCarlo algorithms

So far we have been concerned with the problem of finding the steady-state probability |Π〉
of a given Markov chain with transition matrix Q and studying how the system reaches such
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a steady state. Here we address the inverse problem of constructing a Markov chain which is
ensured to converge to a given probability distribution |Π〉. This is can be very useful when we
wish to sample configurations x from a finite set Ω, with a given probability Πx. As an example,
assume we wish to calculate the average of some observable A defined on the set Ω

E[A(X)] =
∑
x∈Ω

ΠxA(x).

A naïve way of proceeding would be generating a large number of configurations x distributed
according to Πx, calculating Ax in each of them, and performing the arithmetic average of their
values. The approach would lead to a naïve MonteCarlo algorithm:

(1) generate x and compute Πx;
(2) generate a random number z ∈ [0, 1];
(3) if z < Πx accept x and calculate A(x) and store it;
(4) go back to Step 1.

The cycle is repeated a number of times, until some convergence criterion is met, and the average
E[A(X)] is then estimated taking the mean of the accepted values A(x). However, when x lives
in a very large space, Πx is typically very small and the acceptance rate generating x might be
very low. In other words, one would spend most of the time generating random numbers and
computing Πx for configurations that are eventually rejected.

A more efficient way of proceeding is to build a dynamic process that allows sampling mostly
the important configurations with occasional visits to unimportant ones. The idea behind Markov
chains MonteCarlo (MCMC) strategies is to construct a Markov chain designed to converge to
the targeted distribution |Π〉, so that, when evolved to equilibrium, it will visit configurations x
with probability Πx. This is done by defining a regular Markov chain Q which satisfies detailed
balance with |Π〉.

In practice, one generates, at each iteration, a move from the current configuration x to a
new configuration x′, drawn from a distribution of moves η(x → x′), and then execute the move
with probability ax′ x (with probability 1 − ax′ x the move is rejected and the system stays in x).
This leads to an aperiodic Markov chain with transition matrix Q, in which

(1.81) Qx′ x = ax′xηx′x, x′ 6= x

and by consequence Qx x = 1 −
∑

x′ 6=x ax′xηx′x.
The two functions η and a have to be chosen in such a way that the Markov chain with

transition matrix Q has |Π〉 as a steady state. We can impose in particular detail balance

Qxx′Πx′ = Qx′xΠx

for all x 6= x′, so that |Π〉 is an equilibrium distribution for the Markov chain. A standard choice
for η is simply

ηx′x = 1
Nx

∀ x′

where Nx is the size of the subset of Ω accessible from x. In other words, if we are in the
configuration x, we propose randomly one configuration x′ amongst the accessible ones: the
acceptance or not of this configuration will depend on a: but how to choose a? The detailed
balance condition gives

ax′xηx′xΠx = axx′ηxx′Πx′ .

There are several possible choices of a that may satisfy this equation. One aims for the one
allowing for the highest acceptance rate, given that rejections are wasteful. Starting with the
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observation that acceptance probabilities are bounded by one, 0 ≤ ax′x ≤ 1, then observes that

(1.82) ax′x = ηxx′Πx′

ηx′xΠx
axx′ ≤ ηxx′Πx′

ηx′xΠx
.

Two choices are usually adopted
Metropolis–Hastings rule: In the Metropolis–Hastings algorithm, one tries to saturate the

bound above, taking into account that a cannot exceed 1. So we adopt

ax′ x = min
{

1, ηxx′Πx′

ηx′xΠx

}
.

Glauber rule: In the Glauber approach one takes

ax′ x = ηxx′Πx′

ηx′xΠx + ηxx′Πx′
.

Such a choice is convenient in many physical settings, as we will discuss below.
In many practical situations, ηx′x does not depend on the current configuration x nor from the
destination x′, i.e., all configurations have the same “mobility”, and we can drop the dependence
from it in the equations for the acceptance rates so that the two choices mentioned above becomes

(1.83) ax′ x =

min
{

1, Πx′
Πx

}
(Metropolis),

Πx′
Πx+Πx′

(Glauber).

The MCMC algorithm can be implemented therefore by the following pseudo-code:
(1) initialize the system in x;
(2) draw a move x → x′ from ηx′ x′ ;
(3) calculate ax′ x;
(4) generate a random number z ∈ [0, 1];
(5) if z < ax′ x accept configuration x′, and calculate A(x′);
(6) go to Step 2 and iterate.

As in the naïve algorithm, the cycle is repeated until a certain convergence criterion is satisfied.
When the configuration space Ω is very big, the MCMC has a first advantage with respect to
the naïve algorithm: the acceptance rate of the move ax′ x is the ratio of two small numbers, as
opposed to Πx′ (which is a small number), and can be therefore finite. Another very important
advantage appears when dealing with simulations in statistical mechanics.

 Suppose that we are considering a thermodynamical system such that the steady-state is in
Gibbs–Boltzmann form,

(1.84) Πx = e−βH(x)

Z
Z :=

∑
x∈Ω

e−βH(x)

where β is the inverse temperature of our system and H(x) is its Hamiltonian function, depending on
the configuration x. Usually, β and the function H(x) are the input of the analysis. The computation
of Z, however, might be a formidable task for high-dimensional systems, where the size of the space Ω
can be huge: this complication adds to the ones described for the adoption of the naïve MonteCarlo
algorithm.

If we adopt instead a MCMC, we can use

(1.85) ax′x=

{
min
{

1,e−β∆H
}

(Metropolis),
1

1+e−β∆H = 1
2

(
1−tanh β∆H

2

)
(Glauber).

∆H=H(x′)−H(x).
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At this point, we can immediately see one first major advantage of the MCMC method: the computa-
tion of Z is not necessary to specify the acceptance rates a. This is a really important simplification
that makes MCMC fundamental tools for numerical statistical mechanics. Moreover, the above equa-
tions show that Metropolis prescription moves the system downhill, on the energy surface H(x), with
certainty, and uphill, with a probability that is smaller the larger the energy of the new configuration
with respect to the current one. Glauber prescription moves the system both downhill and uphill
with a probability which favours visiting or remaining in configurations with lower energy. Both
prescriptions ensure that the algorithm does not get stuck in local minima, as there is a non-zero
probability to go uphill.

4. Hitting times and hitting probabilities
Lecture 4

As opposed to the asymptotic investigations above, one may be interested in the short time
behaviour, for example, the first time a system reaches a given state (e.g., the first time a gambler
goes bankruptcy). In this section we will consider a setting slightly more general than before,
assuming at first that Ω is a possibly infinite, but countable, set. A quantity that has attracted
large attention in Markov models is the Mean First Passage Time (MFPT), called sometimes
mean hitting time. The time that it takes for the system to go from i to j is a random variable,
(1.86) Tji := min{t ≥ 1: Xt = j and X0 = i},
with the understanding that if j is never reached from i, then Tji = +∞. This random variable
is distributed with distribution
(1.87) fji(t) = P[Tji = t]
By definition, fji(0) = 0. In the following, for the sake of brevity, we will use the notation
(1.88) qji(t) = P1|1[Xt = j|X0 = i]
for the probability of getting to j starting from i in t steps (also, by definition qji(0) = δij). Note
that, if the chain is on a finite number of states, qij(t) is just (a power of) the stochastic matrix
Q, qji(t) = (Qt)ji. Also, qji(t) has not to be confused with fji(t) which is the probability of
getting to j for the first time starting from i in t steps.

The mean first passage time, or mean hitting time, from a state i to j is the expectation of
such time

(1.89) tji := E[Tji] =
∞∑

t=1
tfij(t) + ∞ × fji(+∞).

With the last term, I wanted to stress that fji(+∞) might be non-zero, and in that case E[Tji] =
+∞. However, even if f(+∞) = +∞ it is of course still possible that tji = +∞. If in particular
tii = +∞, the state i is said to be null; otherwise it is said to be positive. The probability that
the chain ever “hits” j at some point for the first time starting from i is

(1.90) fij := P[Tji < +∞] =
∞∑

t=1
fji(t).

A special role plays the case i = j. States can be classified depending on their return time
properties. On the basis of the value of fii, we can give a classification of the states i ∈ Ω. We
say that a state i is recurrent if the probability of coming back to it at some finite time is 1,
(1.91) fii = 1.
which means that there is some time at which the system, which started in i, goes back to i for
sure. This also means that, if Vii is the number of visits of i of the system after starting from i,
then P[Vii = +∞] = 1. If otherwise there is a finite probability of never coming back to i, i.e.,
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fii < 1 or equivalently fii(+∞) > 0, then the state i is transient. But we can sort out a criterion
for this classification that can be very useful.

Theorem 4.1. For each state i ∈ Ω in a Markov chain

(1.92)
∞∑

t=0
qii(t) = E[Vii] =

{
+∞ if i is recurrent,

1
1−fii

if i is transient.

Proof. First of all, let us observe

(1.93)
∞∑

t=0

qii(t) =
∞∑

t=0

E[I(Xt = i)|X0 = i] = E

[
∞∑

t=0

I(Xt = i)
∣∣∣X0 = i

]
= E[Vii].

To compute the expectation, let us look at the probability of different values P[Vii ≥ k] for different
values of k. First of all P[Vii ≥ 1] = fii, as the probability of one visit or more is equal to the
probability of coming back to i in finite time at some point at least once. Similarly,

P[Vii ≥ 1] = fii(1.94)
P[Vii ≥ 2] = f2

ii(1.95)
...

...(1.96)

P[Vii ≥ k] = fk
ii.(1.97)

Then P[Vii = +∞] = limk→+∞ P[Vii ≥ k] = limk→+∞ fk
ii. This limit can be only 1, if fii = 1 (i is

recurrent), or 0, if 0 < fii < 1 (i is transient). To complete the proof then

(1.98)
∞∑

t=0

qii(t) = E[Vii] =
∞∑

k=0

P[Vii ≥ k] =
∞∑

k=0

fk
ii =

{
+∞ if i is recurrent,

1
1−fii

if i is transient.

□

The following theorem says that we can group states in “classes” containing only recurrent
or only transient states: it implies that, in a closed irreducible subset, all states “share” the same
property of being recurrent or transient.

Theorem 4.2. Suppose that, in a Markov chain, i ↔ j. If i is recurrent, then j is
recurrent. On the other hand, if i is transient, then j is transient.

Proof. The fact that i and j are intercommunicating means that ∃t1 > 0 and ∃t3 > 0 such
that qji(t1) > 0 and qij(t3) > 0. We can write now
(1.99) qii(t1 + t2 + t3) ≥ qij(t3)qjj(t2)qji(t1).
Now, let us sum over t2, obtaining

∑
t2
qii(t1 + t2 + t3) ≥ qji(t1)qij(t3)

∑
t2
qjj(t2). If i is transient,

then the term on the left is finite, and so the one on the right. Similarly, we can prove that if j is
recurrent, so it is i. □

If the class is finite-sized, i.e., contains a finite number of states (as we usually assume in
this chapter), however, then it cannot be transient.

Theorem 4.3. Every finite closed irreducible subset Ω0 is recurrent.

Proof. Let us imagine starting from some state j ∈ Ω0: it must exist a state i ∈ Ω0 that is
visited an infinite number of times because we run the chain for infinite time on a finite set. We can
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write
P[Vij = +∞] = P[Vii = +∞|Tij < +∞]P[Tij < +∞] ≡ P[Vii = +∞]P[Tij < +∞].

As P[Vij = +∞] > 0 and P[Tij < +∞], it follows that P[Vii = +∞] 6= 0 and the only possibility is
that P[Vii = +∞] = 1, i.e., i is recurrent, and therefore the entire Ω0 is recurrent. □

In particular, observing that irreducible finite chains are made of a single closed irreducible
subset, the following result is implied.

Corollary 4.4. An irreducible finite Markov chain is recurrent.

The theorem above implies that, if we consider a finite Markov chain, we can isolate the
recurrent classes and the transient classes, so that the matrix Q can be rearranged in the form

(1.100) Q =
(
QTT 0
QRT QRR

)

where R is the set of recurrent states, T is the set of transient states: note that the submatrix
QRR is a legit stochastic matrix itself.

 Example Consider for example the finite Markov chain

12

3 64

5

7 8 9

We can see that 1, 2, 3, and 7 are transient because they can be left for good, whilst all the others
are recurrent. The matrix Q representing this chain has the form

(1.101) Q =


0 Q21 0 0 0 0 0 0 0
0 Q22 Q23 0 0 0 0 0 0

Q31 0 Q33 0 0 0 0 0 0
0 0 Q43 Q44 Q45 0 0 0 0

Q51 0 0 0 Q55 1 0 0 0
0 0 0 Q64 0 0 Q67 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Q87 0 1
0 0 0 0 0 0 0 1 0


Let us now “rename” the nodes, calling, from 1 to 4̂ the transient nodes, and from 5 to 9 the recurrent
ones, using for example the following “dictionary”

1 7→ 1 2 7→ 2 3 7→ 3 4 7→ 5 5 7→ 6 6 7→ 7 7 7→ 4 8 7→ 8 9 7→ 9.

12

3 75

6

4 8 9

This relabeling does not change at all the chain. It is just a matter of naming the nodes. If we write
the associated transition matrix exhibits precisely the structure of Eq.(1.100):
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(1.102) Q =



0 Q21 0 0 0 0 0 0 0
0 Q22 Q23 0 0 0 0 0 0
Q31 0 Q33 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 Q53 0 Q55 Q56 0 0 0
Q61 0 0 0 0 Q66 1 0 0
0 0 0 Q74 Q75 0 0 0 0
0 0 0 Q84 0 0 0 0 1
0 0 0 0 0 0 0 1 0


.

4.1. Mean hitting times in finite Markov chains. Suppose that we want to study the
mean time tji to go from i to j in a finite Markov chain. Starting from state i, the system can
either move to j directly (i.e., in one step), with probability Qji or transition to some other state
k with probability Qki (in one time step) and then move to j taking on average tjk steps so that
j is reached in, on average, tjk + 1 steps in total. This is expressed mathematically as

tji = E[Tji] =
∞∑

t=1
tfji(t) = fji(1) +

∞∑
t=2

tfji(t) = Qji +
∞∑

t=1
(t+ 1)

∑
k 6=j

fjk(t)Qki

= Qji +
∑
k 6=j

(tjk + 1)Qki = 1 +
∑
k 6=j

tjkQki

= 1 +
∑

k

(tjk − tjjδkj)Qki.

(1.103)

In the equation above, I denoted by
∑d∞e

t=1 tfji(t) =:
∑d∞e

t=1 tfji(t)+∞×fji(∞): this means that
we take into account the possibility that some of these tji are actually infinite, therefore making
the entire expression diverge. This set of equations can be solved numerically. Alternatively,
one can express the MFPTs in terms of the eigenvalues and eigenvectors of the transition matrix
(provided they form a complete orthonormal set). Eq. (1.103) can be written in vector notation
introducing the two matrices

(1.104) T =

 t11 t12 ... t1N
t21 t22 ... t2N

...
... . . . ...

tN1 tN2 ... tNN

 T (r) =

 t11 0 ... 0
0 t22 ... 0
...

... . . . ...
0 0 ... tNN


︸ ︷︷ ︸

matrix of mean recurrence times

so that we have the formula
(1.105) T = |1〉〈1| + (T − T (r))Q.

In general, the matrix Q has the structure in Eq. (1.100). This means that we can write the
equation above as

(1.106)
(
TTT TTR

TRT TRR

)
=
(

1 1
1 1

)
+

(
TTT − T (r)

TT TTR

TRT TRR − T (r)
RR

)(
QTT 0
QRT QRR

)
where 1 represents here a matrix of ones. In particular, this equation tells us that the array of
times to get from the transient states to the recurrent states is given by

(1.107) TRT = 1 + TRTQTT + (TRR − T (r)
RR)QRT

that can be solved by looking at the information coming from the recurrent part

(1.108) TRR = 1 + (TRR − T (r)
RR)QRR.
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 Note that from Eq. (1.106)
(1.109) TTR = 1 + TTRQRR,

which means that TTR satisfies
(1.110) TTR(I −QRR) = 1.
This equation has no finite solution because the matrix I −QRR has at least one zero eigenvalue and
cannot be inverted. This makes sense indeed: the expected time to go from a recurrent to a transient
state is infinite!

 Example Let us consider as an example the Markov chain below

(1.111)
1

2

3
having transient state 1 and recurrent states 2 and 3, and associated to

(1.112) Q =

( 0 0 0
1/2 0 1
1/2 1 0

)
QRR

QTT

QRT

.

We have that, using Eq. (1.108)

(1.113) TRR =
(
t22 t23
t32 t33

)
=
(

1 1
1 1

)
+
(

0 t23
t32 0

)(
0 1
1 0

)
=
(

1 + t23 1
1 1 + t32

)
.

This implies immediately

(1.114) TRR =
(
t22 t23
t32 t33

)
=
(

2 1
1 2

)
,

which was maybe expected. Using this in Eq. (1.107),

(1.115) TRT =
(
t21
t31

)
=
(

1
1

)
+
(
t21
t31

)
× 0 +

(
0 1
1 0

)(
3/2
3/2

)
=
(

1/2
1/2

)
.

 Example As a second example, consider the toy-sh Markov chain

(1.116)
1 23

having again transient state 1 and recurrent states 2 and 3, and associated to

(1.117) Q =

(1/3 0 0
1/3 1 0
1/3 0 1

)
QRR

QTT

QRT

.

Using Eq. (1.108)

(1.118) TRR =
(
t22 t23
t32 t33

)
=
(

1 1
1 1

)
+
(

0 t23
t32 0

)(
1 0
0 1

)
=
(

1 1 + t23
1 + t23 1

)
.

We obtain then that t22 = t33 = 1, but we also obtain the equations t23 = t23 + 1 and t32 = t32 + 1,
which make sense only taking t23 = +∞ and t32 = +∞, which indeed is the case: it is impossible to
access 3 from 2 and vice versa. Using this in Eq. (1.107), we get something that might appear as not
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satisfactory,

(1.119) TRT =
(
t21
t31

)
=
(

1
1

)
+
(
t21
t31

)
1
3 +

(
0 +∞

+∞ 0

)(
1/3
1/3

)
=
(

+∞
+∞

)
,

but however makes sense: in computing t21, there is a finite probability that the system goes to 3
first, and gets stuck there forever and never reach 2.

Absorption time. — A very special, but important, case is the case in which the recurrent
states are r absorbing states (see for example the chain in Eq. (1.116)). In this case QRR = I,
identity matrix of size r. If r > 1, the time to get absorbed in one specific state can be infinite,
simply because of the possible absorption in another state: this is what happens, for example,
in the example on the chain (1.116). We can, however, ask another question, i.e., what is the
average time tai to get absorbed in some state starting from the transient state i? These times can
be collected in a vector 〈T a| of size N − r whose ith component is tai . To compute the elements
of this vector we can follow the spirit of the derivation of Eq. (1.103)

tai =
∑
j∈R

Qji +
∑
j∈T

(taj + 1)Qji

= 1 +
∑
j∈T

tajQji.
(1.120)

The equation expresses the fact that we can get to an absorbing state starting from i either in
one step or moving to another transient j and then from it to the absorbing states. We can
rewrite this expression in the vectorial form
(1.121) 〈T a| = 〈1| + 〈T a|QTT ⇒ 〈T a| = 〈1|(I −QTT)−1.

In this case, we can also write an equation for the probability of hitting (i.e., arriving for the
first time) one recurrent state j starting from a transient state i. We can indeed write

(1.122) aji = Qji +
∑
k∈T

ajiQki.

The quantity aji is nothing but fji used before: we adopt a different letter to stress that we are
in a situation in which all the recurrent states are absorbing states, so fji is the probability that,
starting from i, the system will be “absorbed” in j. The first term takes into account a direct
jump j → i. The sum, instead, runs only on transient states: if the system gets to one of the
recurrent ones, it gets absorbed there and cannot go to j. Defining now A ∈ Rr×(N−r) as the
matrix of probability that the system is absorbed in j starting from i, it satisfies
(1.123) A = QRT +AQTT ⇒ A = QRT(I −QTT)−1.

The case of regular chains. — Assuming now that our finite Markov chain is regular:
this implies that all states are recurrent and there is a unique vector |Π〉 that corresponds to
a steady state probability. We can multiply both terms in (1.105) by |Π〉, vector with positive
entries, and use the fact that Q|Π〉 = |Π〉,

(1.124) T |Π〉 = |1〉 + (T − T (r))|Π〉 ⇔ T (r)|Π〉 = |1〉.

This means that the recurrence times tii satisfy

(1.125) tiiΠi = 1 ⇒ tii = 1
Πi

In other words, what we proved is the following.
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Lemma 4.5 (Kač Lemma). For a regular Markov chain, the element i of the steady-state
distribution |Π〉 is given by the reciprocal of the corresponding mean recurrence time,

(1.126) Πi = 1
tii
.

This also implies that
∑

i
1

tii
= 1.

We have obtained therefore the expression of T (r), which consists of these quantities only.
The time tii can be interpreted as the expected number of time steps it takes to the system to
first hit state i, after its release from state i itself. To obtain the remaining quantities, we start
from the same equation (1.105)

T (I −Q) = |1〉〈1| − T (r)Q

But applying both sides to |ψa〉, a 6= 1,

T (I −Q)|ψa〉 = |1〉〈1|ψa〉 − T (r)Q|ψa〉 ⇔ (1 − λa)T |ψa〉 = −λaT
(r)|ψa〉

Tensor-multiplying by 〈ϕa| and summing over a

T
∑
a>1

|ψa〉〈ϕa| = −
∑
a>1

λa

1 − λa
T (r)|ψa〉〈ϕa|

If we use now
∑

a>1 |ψa〉〈ϕa| = I − |Π〉〈1| we obtain

T = T |Π〉〈1| −
∑
a>1

λa

1 − λa
T (r)|ψa〉〈ϕa|

The missing piece is the matrix T |Π〉〈1|. To deal with it we can observe that, switching to
components, the previous equation read

(1.127) tji =
∑

k

tikΠk −
∑
a>1

λa

1 − λa

1
Πj
ψa

j ϕ
a
i ⇒

∑
k

tikΠk = tji +
∑
a>1

λa

1 − λa

ψa
j ϕ

a
i

Πj

For i = j

(1.128)
∑

k

tjkΠk = 1
Πj

+
∑
a>1

λa

1 − λa

ψa
j ϕ

a
j

Πj

We can now collect all our pieces and write finally

(1.129) tji = 1
Πj

+
∑
a>1

λa

1 − λa

ψa
j ϕ

a
j − ψa

j ϕ
a
i

Πj
.

The Kemeny constant. — A “typical time” of the dynamics can be obtained averaging
tji over the possible destinations j, sampling them with probability Πj ,

(1.130)
∑

j

Πjtji = N +
∑
a>1

λa

1 − λa

∑
j

ψa
j (ϕa

j − ϕa
i ) = N +

∑
a>1

λa

1 − λa
= 1 +

∑
a>1

1
1 − λa

,

where we have used
∑

j ψ
a
j = 〈1|ψa〉 = δa,1 and the orthonormality of eigenvectors. This also

means that, if we exclude the recurrence time tii from the sum,

(1.131)
∑
j 6=i

Πjtji =
∑
a>1

1
1 − λa

≡ ζ.

The quantity ζ is known as the Kemeny constant and it has attracted a large interest, over the
years, since its introduction in 1960 by Kemeny and Snell. It represents the sum of all relaxation
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timescales in a Markov chain. Surprisingly, the Kemeny constant is independent of the starting
state i. This intriguing constancy has been the subject of several studies.





CHAPTER 2

Continuous-time Markov processes

Abstract. In the previous chapter, we have considered Markovian processes which involve
transitions between states in a finite set Ω at discrete times. In this chapter we look at Markov
processes evolving in continuous time, in either discrete or continuous space Ω. Continuous-
time processes require the introduction of transition rates, i.e., transition probabilities over an
infinitesimal time interval, as opposed to transition probability in one time-step described by
Q in the case of Markov chains. The master equation is the fundamental tool to describe such
processes and in particular the probability of finding the system in a given state. Such prob-
ability changes until the system reaches a final equilibrium steady state in which transitions
cannot alter the probability distribution1. Once again, the Markovian property will be crucial
to derive the master equation, which will be the starting point of many analyses that we will
perform during the module.

1. The master equation
Lecture 5

1.1. Derivation. Suppose that we have a stochastic process Xt taking values in the finite
set Ω = {1, . . . , N}. We can write down a Markov chain evolving at time steps t = 0, τ, 2τ, . . . .
We start from the equation

(2.1) Pj(t+ τ) := P1[Xt+τ = j] =
∑
i∈Ω

P1|1[Xt+τ = j|Xt = i]P1[Xt = i]

that we can write in a vectorial form as

(2.2) |P (t+ τ)〉 = Q(τ)|P (t)〉

where Q(τ) encloses the transition probabilities, between pairs of state, on a lag-time τ

Qji(τ) = P1|1[Xt+τ = j|Xt = i].

We assume here that the process is homogeneous. Note that Q(τ), at given τ , is a stochastic
matrix precisely of the same type of the ones discussed in the previous chapter: it has, therefore,
the same properties, e.g., 〈1|Q(τ) = 〈1|. The master equation can be derived as the continuous
time limit τ → 0 of Eq. (2.2). Indeed, let us subtract from both term |P (t)〉 and dividing by τ

(2.3) |P (t+ τ)〉 − |P (t)〉
τ

= Q(τ) − I
τ

|P (t)〉.

Assuming that the matrix

(2.4) W := lim
τ→0

Q(τ) − I
τ

exists, we can write the master equation in the form

(2.5) d |P (t)〉
d t

= W |P (t)〉,

where the matrix W is the matrix of the transition rates. Since 〈1|Q = 〈1| it follows that
〈1|W = limτ→0

1
τ 〈1|(Q(τ) − I) = 〈0|, vector of zeros. I.e., the vector 〈1| is left eigenvector of

29
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W with corresponding eigenvalue 0. This fact expresses the property

(2.6)
∑

i

Wij = 0 ⇔ Wii = −
∑
j 6=i

Wji.

Switching to components, this property allows us to rewrite the equation as follows

(2.7) dPi(t)
d t

=
∑
j 6=i

WijPj(t) +WiiPi(t) =
∑
j 6=i

[WijPj(t) −WjiPi(t)]

This equation can be interpreted as follows: the first piece in parenthesis is the gain in probability
due to the transitions from other states j to i; the second term is the loss due to transitions from
i to other states j.

 If Ω has the cardinality of the continuum, we can derive an analogous equation for the probability
density,

(2.8) ∂tp(x, t) =
∫

[W (x|y)p(y, t) −W (y|x)p(x, t)] d y.

1.2. Steady state. A stationary solution |Π〉 is such that

(2.9) W |Π〉 = |0〉 ⇔
∑
j 6=i

WijΠj =
∑
j 6=i

WjiΠi.

In other words, |Π〉 is the right eigenvector corresponding to eigenvalue 0. The equation above
states that, at stationarity, the total number of transition per time into a state i equals on average
the total number of transition out of it. One has detailed balance if each individual transition is
balanced,

(2.10) WijΠj = WjiΠi.

When detailed balance holds, the stationary distribution is often called an equilibrium distribu-
tion2. In detailed balance regime, the entries stationary distribution vector can be obtained by
iteration, i.e., expressing all the steady-state probabilities in terms of Π1, using the fact that

Π2 = W21

W12
Π1,(2.11)

Π3 = W32

W23

W21

W12
Π1,(2.12)

...
...(2.13)

ΠN =
N−1∏
i=1

Wi+1 i

Wi i+1
Π1(2.14)

and finally using the normalization condition
∑

i Πi = 1 to determine Π1.

2Note however that detailed balance is a necessary but not sufficient condition for thermodynamic
equilibrium.
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1.3. The propagator. As it happened with Q in discrete-time Markov chains, W is in
general not symmetric, so it has left and right eigenvectors. We have already seen that 〈1 is a
left eigenvector corresponding to eigenvalue 0, whose corresponding right eigenvector is stationary
(but it is not obvious that is a good probability vector). In general, we will define

W |ψa〉 = µa|ψa〉,(2.15)
〈ϕb|W = µb〈ϕb|,(2.16)

with a spectrum {µa}a∈[N ]. If they form a complete set (i.e., W is diagonalizable), we can write

(2.17) W =
∑

a

µa|ψa〉〈ϕa|

and the right eigenvectors can be used as a basis to expand any vector, and in particular any
probability vector

(2.18) |P (t)〉 =
N∑

a=1
αa(t)|ψa〉,

where the time-dependent coefficients αa(t) = 〈ϕa|P (t)〉 represent the projections of the proba-
bility vector on the left eigenvectors. Inserting into the master equations we have

(2.19) d |P (t)〉
d t

=
∑

a

α̇a|ψa〉 =
∑

a

αaW |ψa〉 =
∑

a

µaαa|ψa〉

Multiplying from left by 〈ϕa| and using the bio-orthogonality of left and right eigenvectors
〈ϕa|ψb〉 = δab, we get

(2.20) α̇a(t) = µaαa(t) ⇒ αa(t) = αa(0) eµat

so that

(2.21) |P (t)〉 =
N∑

a=1
αa(0) eµat |ψa〉 ≡ etW |P (0)〉.

The object etW plays the same role played by Q in discrete-time Markov chains: it is the
propagator that makes the probability vector evolve, so that, if we give a unite of time τ , a
propagation in time of t = ℓτ is given applying the operator eℓτW = (eτW )ℓ. We can define
therefore

(2.22) Q(τ) := eW τ so that Qji(τ) = P1|1[Xτ = j|X0 = i].

This definition is consistent with the one given for W , being Q(τ) = I + τW + o(τ). Note that
Qii(t) = 1 + tWii + o(t) > 0 for t small enough: in other words, the matrix Q(t) corresponds to
an aperiodic chain. Also, we have

|P (t)〉 = Q(t)|P (0)〉 = Q(t− t′)|P (t′)〉.

Finally, since Q(t) = eW t, one has
dQ(t)

d t
= WQ(t)

i.e., Q(t), as a matrix, solves the same equation as |P (t)〉 with initial conditon Q(0) = I. This
makes sense: rembember that Q is a matrix of conditional probability, and their evolution, in a
Markov process, is the same as the one of full probabilities (the conditioning playing the role of an
initial condition). The detailed balance condition in Eq. (2.10) translates to Qij(t)Πj = Qji(t)Πi,
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as we would have written for a discrete-time chain. FinallyQ(t) satisfies a Chapman–Kolmogorov
equation,
(2.23) Q(t− t′) = Q(t− t′′)Q(t′′ − t′).

 Prove that if WijΠj = WjiΠi, then Qij(t)Πj = Qji(t)Πi.

2. Convergence to equilibrium

As in the case of discrete-time Markov chains, the spectral properties of W are crucial to
understand the long time behavior of the system. Let us assume that W has a complete set of
(left and right) eigenvectors, and corresponding eigenvalues. If |ψa〉 is eigenvector of W with
eigenvalue µa, then, for any τ , it is also eigenvector of Q(τ) with eigenvalue eµaτ . This means
that we can write

(2.24) Q(τ) =
N∑

a=1
eµaτ |ψa〉〈ϕa|.

Remembering the fundamental properties of Q and applying the Perron–Frobenius theorem to
Q(τ) at given τ exactly as we did for discrete-time Markov chains, we can give a series of
statements. First of all, Q(τ) has always an eigenvalue equal to 1, so W has an eigenvalue
µ1 = 0, as we already noted. We also know that the corresponding left eigenvector is 〈1|, and
the corresponding right eigenvector is a probability vector |Π〉, such that Q(τ)|Π〉 = |Π〉 and
therefore W |Π〉 = |0〉.

If Q(τ) is irreducible, being also aperiodic for small time τ , it is regular: this means there is
only one eigenvalue λ1 of Q(τ) which has modulus equal to 1, and therefore only one eigenvalue
of W such that µ1 = 0. Moreover, all other eigenvalues λa of Q(τ) have |λa| < 1, meaning that
| eµaτ | < 1, i.e., <(µa) < 0. As a consequence, in the evolution under an irreducible Markov
process, a generic initial state converges to the steady state,

(2.25) |P (t)〉 = etW |P (0)〉 =
N∑

a=1
αa(0) eµat |ψa〉 t→+∞−−−−→ |Π〉.

 Suppose that W satisfies detailed balance with its steady state, i.e., WijΠj = WjiΠi. This implies
1√
Πj

Wji

√
Πi = 1√

Πi

Wij

√
Πj

We can define then the matrix M = D−1/2WD1/2, where Dij = δijΠi. The equation M is by
construction related to W by an orthogonal transformation, plus the equation above tells us that
M is symmetric. This implies that M has the same eigenvalues as W and it has a complete set of
orthonormal eigenvevctorsa |χa〉, such that M |χa〉 = µa|χa〉. So

(2.26) M =
∑

a

µa|χa〉〈χa| ⇔ W =
∑

a

µaD
1/2|χa〉〈χa|D−1/2.

The set
(2.27) |ψa〉 = D1/2|χa〉 〈ϕa| = 〈χa|D−1/2 a ∈ [N ]
and form a complete, orthonormal set, as 〈ϕb|ψa〉 = 〈χb|χa〉 = δab.

aThis time, left and right eigenvectors are identical because the matrix is symmetric.
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2.1. H-theorem. One of the main results concerning the evolution of |P (t)〉 towards |Π〉
is the so-called H-theorem, introduced by Ludwig Boltzmann in 1872. In its original formulation,
Boltzmann H-theorem proves that a certain functional, called entropy and defined as

(2.28) H[P (t)] = −
∑

i

Pi(t) lnPi(t)

is a non-decreasing function of time in systems with symmetric transition rates W = W>, and
that the time-dependent distribution converges to the uniform distribution, which maximizes the
entropy.

We will give a precise statement below, but, before that, we can work in a slightly more
general setting and prove that detail balance in the steady state is a sufficient (although not
necessary) condition for any probability |P (t)〉 to converge to a steady state. To prove this
statement, we consider the Kullback–Leibler divergence between the steady state |Π〉 and a
different distribution |P (t)〉. This is defined as

(2.29) KL(P (t)‖Π) :=
∑

i

Pi(t) ln Pi(t)
Πi

.

This is a sort of “distance” between the two distributions and satisfies a series of properties. For
example, it is always non-negative, and it is equal to zero if, and only if, the two distributions
are the same, as proven in the following Lemma.

Lemma 2.1 (Gibbs inequality). The Kullback–Leibler divergence between two probability
distributions |P 〉 and |P ′〉 is such that
(2.30) KL(P ‖P ′) ≥ 0.
Moreover, KL(P ‖P ′) = 0 if and only if the the two distributions are identical, |P 〉 = |P ′〉.

Proof. Let us show prove the previous lemma. We start observing that, being ln x > x− 1 for
0 < x < 1, then

(2.31) KL(P ‖P ′) =
∑

i

Pi ln Pi

P ′
i

= −
∑

i

Pi ln P
′
i

Pi
≥ −

∑
i

P ′
i +
∑

i

Pi = 0.

It is evident that, if |P 〉 = |P ′〉, then KL(P ‖P ′) = 0. On the other hand, in Eq. (2.31) equality
holds if Pi = P ′

i for all i, so that ln x = x− 1 exactly. □

Using KL(P (t)‖Π) as measure of distance between |P (t)〉 and |Π〉, we can show that this
quantity decreases with the evolution of our system if we assume that |Π〉 satisfies detailed
balance, and in particular |P (t)〉 evolves precisely towards |Π〉.

Proposition 2.2. Let us consider a finite Markov chain having stationary state |Π〉 and
let us assume that such state satisfies detailed balance. Then the Kullback–Leibler divergence
KL(P (t)‖Π) is a decreasing function in time. Moreover, for t → +∞, |P (t)〉 → |Π〉.
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Proof. Let us start by showing that the Kullback–Leibler divergence between |P (t)〉 and |Π〉
decreases with the evolution of the system. Using the master equation we have

dKL(P (t)‖Π)
dt =

∑
i

(
lnPi(t)

Πi
+1
)

dPi(t)
dt

=
∑

i

lnPi(t)
Πi

∑
j

(WijPj(t)−WjiPi(t))

=
∑

i

lnPi(t)
Πi

∑
j

(
WijΠj

Pj(t)
Πj

−WjiΠi
Pi(t)
Πi

)
=
∑

ij

WijΠj lnPi(t)
Πi

(
Pj(t)
Πj

−Pi(t)
Πi

)
=1

2
∑

ij

WijΠj

(
lnPi(t)

Πi
−lnPj(t)

Πj

)(
Pj(t)
Πj

−Pi(t)
Πi

)
<0.

(2.32)

Observe that in the last line the contribution i = j are absent. On the other hand, for i 6= j Wij ≥ 0
by definition. The last inequality derives from the general inequality (x − y)(ln x − ln y) ≥ 0 for all
x, y > 0 with equality if only if x = y. It follows that, as KL(P (t)‖Π) is bounded from below, for
t → +∞

(2.33) lim
t→+∞

d KL(P (t)‖Π)
d t = 0 ⇔ limt→+∞ Pi(t)

Πi
= limt→+∞ Pj(t)

Πj
∀i, j.

In other words, 1
Πi

limt→+∞ Pi(t) = γ is some constant that does not depend on i. But then 1 =∑
i
limt→+∞ Pi(t) = γ

∑
i
Πi = γ, which means that, ∀i, Pi(t) → Πi. □

We can now state and prove the core result of this subsection.

Theorem 2.3 (H-theorem). Let us consider a Markov process on N states and let us
assume W = W>. Then its steady state is |Π〉 = 1

N |1〉 and, moreover,

(2.34) dH[P (t)]
d t

≥ 0.

Proof. Let us first prove that Πi = 1/N, i.e., |Π〉 = 1
N

|1〉 is indeed a steady state. It is enough
to observe that, as 〈1|W = 〈0|, being W symmetric, 1

N
W |1〉 = (〈1|W )> = (〈0|)> = |0〉. To

complete the proof, note that
(2.35)

H[P (t)]=−KL(P (t)‖Π)−
∑

i

Pi(t)lnΠi=−KL(P (t)‖Π)−ln 1
N

∑
i

Pi(t)=−KL(P (t)‖Π)+lnN.

Taking a time derivative and applying Proposition 2.2

(2.36) dH[P (t)]
d t = −d KL(P (t)‖Π)

d t ≥ 0.

□

2.2. Expectations and correlations. We can derive dynamical equations for the aver-
ages, directly from the master equation, without solving the latter. Let us consider for example
the average E[f(Xt)] =

∑
i fiPi(t) of a function f of a our process Xt. Then

(2.37) dE[f(Xt)]
d t

=
∑

i

fi
dPi(t)

d t
=
∑

ij

fi[WijPj(t) −WjiPi(t)] =
∑

ij

(fi − fj)WijPj(t).
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Two-time averages can be easily rewritten in terms of matrix W . For example, given two
observables AXt and BXt ,

(2.38) E[AXt+τ
BXt

] =
∑

ij

P2[Xt+τ = i;Xt = j]AiBj

=
∑

ij

P1|1[Xt+τ = i|Xt = j]Pj(t)AiBj =
∑

ij

Qij(τ)Pj(t)AiBj .

In other words, a two-time average is weighted with the distribution of dynamical paths starting
at time t and ending at time t + τ . At stationarity, E[AXt+τBXt ] =

∑
ij Qij(τ)ΠjAiBj is a

function of the time difference τ only, as we know. If detailed balance is satisfied, CAB(τ) =∑
ij Qij(τ)ΠjAiBj =

∑
ij Qji(τ)ΠiAiBj = CBA(τ). Hence, stationarity and detailed balance

jointly lead to time-reversal symmetry CAB(τ) = CBA(τ) = CAB(−τ) as expected.

 A useful observable, when analysing stochastic trajectories Xt is the occupancy-number function,
defined as θi(t) := I(Xt = i), a stochastic process itself, equal to 1 if Xt = i and zero otherwise. The
occupancy-number correlation function Cij(t, t′) := E[θi(t)θj(t′)] gives the probability to find the
system is in i at time t when released in j at time t′. At stationarity, using the spectral representation
of W , one has

(2.39) E[θi(t+ τ)θj(t)] = Qij(τ)Πj =
N∑

a=1

eτµa ψa
i ϕ

a
j Πj

The connected correlator is then

(2.40) ⟪θi(t+ τ)θj(t)⟫ = Qij(τ)Πj − ΠiΠj =
N∑

a=1

eτµa ψa
i ϕ

a
j Πj − ΠiΠj =

N∑
a=2

eτµa ψa
i ϕ

a
j Πj

i.e., a superposition of N − 1 exponential functions of time. In particular, for 2-state Markov models,
it is a single exponential function ⟪θi(t+ τ)θj(t)⟫ = eτµ2⟪θi(0)θj(0)⟫.

3. Hitting times

Results on hitting times in continuous-time dynamics can be derived directly from what
we obtained for Markov chains by setting the time step to τ in the discrete time dynamics, and
taking the limit τ → 0 at the end. The eigenvalues of the matrix Q(τ) are given by λa(τ) = eτµa ,
as we saw. For a Markov chain evolving in discrete time tji was the average number of steps to
go from state i to state j. To get the time required to go from i to j we need to multiply both
sides of (1.129) by τ , unit of time,

(2.41) tjiτ = τ

Πj

[
1 +

∑
a>1

eµaτ

1 − eµaτ
ψa

j (ϕa
j − ϕa

i )

]
.

Let us call tjiτ = t̂ji the hitting time, and take the limit τ → 0. We obtain

t̂ji = − 1
Πj

∑
a>1

ψa
j (ϕa

j − ϕa
i )

µa
.(2.42)

In contrast to the discrete time result, we have

(2.43) t̂jj = 0,

which is intuitively understood, as here there is no time step to wait to return to the state (and
all states are aperiodic!).
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Figure 1. Pictorial representation of the perturbation discussed in Section 4:
at t = 0 the parameter h is put to 0 and the expectation of the observable A
start to relax towards a new equilibrium value.

Eq. (1.131) also can be treated in the τ → 0 limit to give us the Kemeny constant ζ in
continuous time as

(2.44)
∑
j 6=i

Πj t̂jk =
∑
j 6=i

Πjtjkτ =
∑
a>1

τ

1 − eτµa

τ→0−−−→ −
∑
a>1

1
µa

≡ ζ.

4. Linear response theory
Lecture 6

In this section we examine the relaxation towards equilibrium of a system that has been
brought out of equilibrium by an external perturbation. The main result is that for small devia-
tions from equilibrium this relaxation is described by the equilibrium time correlation function.
This is the so-called Onsager regression law. To do so, we will use a slightly different notation
than before, assuming that our stochastic process Xt consists of a vectorial random quantity. We
will denote x the values that Xt can take. This is just a reminder of the fact that the treatment
includes the case in which the stochastic process involves many degrees of freedom.

We will assume that the system is described by a function, the classical Hamiltonian

(2.45) H(x) = H0(x) − hB(x),

where H0(x) and B(x) are some observables, i.e., functions of a value x that the stochastic
process can take. We imagine that, since t = −∞, the system is in contact with a infinitely large
reservoire at temperature β−1, and in equilibrium with it. Statistical mechanics tells us that the
equilibrium distribution can be written as

(2.46) Πx = e−βH(x)∑
x e−βH(x) = e−βH0(x)+βhB(x)∑

x e−βH0(x)+βhB(x) .

An observable A(X) is averaged as E[A(X)] =
∑

xA(x)Πx ≡ Eh[A(X)], without any time de-
pendence as we are at equilibrium (the reason of the subscript h will be clear in a moment).
We imagine that this is the set-up for t < 0, then, at time t = 0, we perturb the Hamiltonian
H(x) by turning off the additional term in B(x), i.e., by suddenly putting h = 0. This changes
the Hamiltonian of the system to H0(x): the system, which was at equilibrium for t < 0, finds
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itself out of equilibrium as the Hamiltonian has suddenly changed. What we expect is that, for
t → +∞, the system will reach a new equilibrium, namely

(2.47) Π0
x = e−βH0(x)

Z0
Z0 :=

∑
x

e−βH0(x).

so that, for example, the same observable A(X) will have, for t → +∞, expectation E0[A(X)]
(we have added a subscript 0 to stress that it is the equilibrium expectation at h = 0). However,
how E[A(Xt)] will approach this new equilibrium value after the change of the parameter?

The starting point of our study is the equilibrium distribution Πx, which plays the role of
initial distribution |P (0)〉 ≡ |Π〉. For small h, we can Taylor-expand numerator and denominator
of Eq. (2.46), to get

(2.48) Πx' e−βH0(x)(1+βhB(x))∑
xe−βH0(x)(1+βhB(x))

=e−βH0(x)(1+βhB(x))
Z0(1+βhE0[B(X)])

=Π0
x

(
1+βh(B(x)−E0[B(X)])

)
.

To make expressions lighters, we will use in the following the notation
δB(x) := B(x) − E0[B(X)]

so that

(2.49) Πx ' Π0
x

(
1 + βh δB(x)

)
.

Next, we calculate the expectation value of A(Xt) for t > 0, i.e., in the non-equilibrium regime:

E[A(Xt)] =
∑
x

A(x)Px(t)

=
∑
x

A(x)
∑
y

P0
1|1[Xt = x|X0 = y]Πy

'
∑
x

A(x)
∑
y

P0
1|1[Xt = x|X0 = y]Π0

y

(
1 + βh δB(y)

)
= E0[A(X)] + βh

(
E0[A(Xt)B(X0)] − E0[A(X)]E0[B(X)]

)
= E0[A(X)] + βh⟪A(Xt)B(X0)⟫0

(2.50)

In the equations above, we have stressed, using P0
1|1, that the evolution takes place with h = 0

and therefore |Π0〉 is stationary with respect to it. Hence,
(2.51) E[δA(Xt)] := E[A(Xt)] − E0[A(X)] = βh⟪A(Xt)B(X0)⟫0.

A special case is obtained when A = B and the equation takes the form
(2.52) E[δB(Xt)] = βh⟪B(Xt)B(X0)⟫0.

Eq. (2.52) is normally referred to as Onsager regression law and involves an out-of-equilibrium
relaxation induced by a perturbation (on the left) expressed in terms of a fluctuation at equilib-
rium (on the right). In other words, the relaxation of macroscopic non-equilibrium perturbation
is governed by the same laws as the regression of spontaneous microscopic fluctuations at equi-
librium.

We can expect E[δA(Xt)] to depends linearly from h: for h → 0, after all, E[δA(Xt)] → 0.
We can make therefore the following ansatz

(2.53) E[δA(Xt)] = h

0∫
−∞

RAB(t, t′) d t′
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where we have introduced a response function RAB(t, t′): this function measure how much the
fact that h was on at time t′ < 0 affects E[δA(Xt)] at time t > 0. In particular, under the
assumption of stationarity, we expect the precise times t and t′ are not important and, instead,
RAB will depend on the time interval τ = t − t′ between the perturbation and the effects we
observe. Moreover, for reasons of causality we must have

(2.54) RAB(τ) = 0 if τ < 0.

Indeed, the fact that h was on at some time t′ cannot affect E[δA(Xt)] at some previous time
t < t′. Assuming t > 0, we can rewrite then

(2.55) E[δA(Xt)] = h

0∫
−∞

RAB(t− t′) d t′ = h

∞∫
t

RAB(τ) d τ.

Inserting this relation into (2.51) and differentiating with respect to time then gives

(2.56) RAB(t) = −βθ(t) d
d t
⟪A(Xt)B(X0)⟫0.

This relation is known as fluctuation-dissipation theorem (FDT). A special case of particular
interest is the one for which the variable A(X) is chosen to be equal to B(X). In this case,
if ⟪B(Xt)B(X0)⟫0 ≡ CB(t) is the connected self-correlation of B, and dropping one subscript
RBB ≡ RB , the FDT reads as

(2.57) RB(t) = −βθ(t)ĊB(t).

5. Jump processes

The family of jump processes includes several processes of practical interest, such as Poisson
processes, random walks, and linear birth-death processes. In a jump process, the set of states
Ω is discrete and can be labeled by integer numbers, in such a way that the system can move
only between adjacent states. A pictorial representation is the following,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
r5

ℓ5

In this chapter we will assume, unless otherwise specified, that Ω = Z or Ω = N0: in other
words, we will assume that the space of possible configurations of our system is infinite but
countable. Moreover, as we are assuming that there is an ordering between states (which is
the ordering of Z of N0) and the system jumps only between neighbouring configurations, the
relevant rates are, for each k ∈ Ω, the rate of moving “right”, rk := Wk+1 k, and ℓk := Wk−1 k

rate of moving left. Therefore, the master equation reads

(2.58) dPk(t)
d t

= ℓk+1Pk+1(t) + rk−1Pk−1(t) − (ℓk + rk)Pk(t).

We can at this point specify different type of very relevant jump processes, depending on the
values of ℓk and rk.
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5.1. The Poisson process. In Poisson processes Ω = N0, so that i = 0, 1, . . . with steps
to the right only, occurring at random times with fixed rate. This means in particular
(2.59) rk ≡ λ, ℓk = 0, ∀k.

Here λ ∈ R+ is constant. A typical Poisson process is the one concerning the probability that Nt

independent events occurred at time t. These events could be for example customers arriving in
a shop, or jobs arriving in a queuing system, or particles emitted from unstable nuclei. Usually,
the number of events at time t = 0 is set to zero, i.e., N0 = 0 and therefore Pk(0) = δk0. Given
that steps occur only to the right, Pk(t) = 0 ∀ k < 0 and ∀ t. The master equation for Poisson
process can be promptly written as
(2.60) Ṗk = λ(Pk−1 − Pk),

and is most easily solved through use of the generating function method, a method we will used
frequently in this Chapter. In this method we introduce an auxiliary function

(2.61) F (z, t) :=
∞∑

k=0

Pk(t)zk

for Pk(t) := P[Nt = k]. Note that, first of all, F (1, t) =
∑∞

k=0 Pk(t) = 1 ∀t: this is always
true and simply expresses the normalisation of probability. Various moments of the stochastic
process Nt are obtained by taking derivatives of F (z, t) with respect to z and allowing z → 1.
For example

lim
z→1

∂F (z, t)
∂z

=
∞∑

k=0

kPk(t) = E[Xt],

lim
z→1

∂2F (z, t)
∂z2 =

∞∑
k=0

k(k − 1)Pk(t) = E[X2
t ] − E[Xt],

(2.62)

and so on. From the master equations (2.60), we can obtain a single equation for the generating
function F (z, t), by multiplying (2.60) by zk and summing over k,

∂F (z, t)
∂t

=
∞∑

k=0

zkṖk(t) = λ

∞∑
k=0

zk(Pk−1(t) − Pk(t))

= λz

∞∑
k=1

zk−1Pk−1(t) − λ

∞∑
k=0

zkPk(t)

= λz

∞∑
k=0

zkPk(t) − λ

∞∑
k=0

zkPk(t)

= λ(z − 1)F (z, t)

(2.63)

where we have used P−1(t) = 0 and shifted the index k → k + 1 in the first sum (this does not
affect the upper bound as it is infinite). The solution of the previous equation is

(2.64) F (z, t) = F (z, 0) eλ(z−1)t

and contains an arbitrary function F (z, 0) =
∑∞

k=0 Pk(0)zk which is determined from initial
conditions. If we assume Pk(0) = δk 0, we get F (z, 0) = 1. Having F (z, t), we can find Pk(t) by
expanding F (z, t) = eλ(z−1)t in powers of z

(2.65) F (z, t) = eλ(z−1)t = e−λt
∞∑

k=0

(λzt)k

k!
→ Pk(t) = (λt)k

k!
e−λt
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which is a Poissonian distribution (hence the name of the process) with average E[Xt] = λt.
Distribution of waiting times. — In a Poisson process, the random variable Nt increases

by one with probability λ∆t during the interval ∆t, independently from the history of the process
up to that moment: this is what rk ≡ λ means. A realisation of the process has the form in
Fig. 2. Let us set t = 0 as the time origin. An event may or may not have occurred at t = 0. Any

1 2 3 4

1

2

3

4

t

Nt

Figure 2. Sample path of a Poissonian process with λ = 1.

property of the process after t = 0 is independent of what happened at t = 0 or before. Let T be
the time at which the first event occurs, e.g., the first customer arrives. This is a random variable
that we can formally define as T = mint≥0{t : Nt = 1}. We will call its probability distribution
ΦT(t) = P[T > t]. In particular, ΦT(t) is the probability that T is larger than t. Then

ΦT(t+ ∆t) = P[T > t+ ∆t] = P[T > t, Nt+∆t = Nt]
= P[T > t]P[Nt+∆t = Nt] = ΦT(t)P[N∆t = N0]

= ΦT(t)P0(∆t) = ΦT(t) e−λ∆t = ΦT(t)(1 − λ∆t+ o(∆t)),
(2.66)

meaning that ΦT(t+∆t)−ΦT(t)
∆t = −λΦT(t), i.e., taking ∆t → 0, ∂tΦT(t) = −λΦT(t) and finally

(2.67) ΦT(t) = e−λt .

where we used the fact that ΦT(0) = 1. The probability density p(t) = −∂tΦT(t) is then an
exponential distribution
(2.68) p(t) = λ e−λ .

The typical time interval between two events is obtained as

(2.69) E[T] =
∞∫

0

tλ e−λt d t = 1
λ

as expected, being λ the transition rate (i.e., number of transitions per unit of time).

6. Continuous-time random walks on the line

6.1. The symmetric random walk. An unbiased one dimensional random walk process
Xt can be pictured as a walker jumping on the integer positions, and has therefore Ω = Z. At
any position k, the rate of going left and right is the same, and we can for example fix it as
rk = ℓk = 1/2.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30



6. CONTINUOUS-TIME RANDOM WALKS ON THE LINE 41

The master equation is, therefore,

(2.70) dPk(t)
d t

= Pk−1(t) + Pk+1(t)
2

− Pk(t).

As in the case of Poisson processes, a good strategy to solve this system is to write down an
equation for the generating function

(2.71) F (z, t) :=
∞∑

k=−∞

Pk(t)zk.

Note that this time the sum runs over all integers. It is a simple exercise to show that in this
case F (z, t) satisfies

(2.72) ∂tF (z, t) =
(
z + z−1

2
− 1
)
F (z, t) ⇒ F (z, t) = F (z, 0) e 1

2 (z+z−1−2)t .

The generating function that we obtained might look a little bit convoluted and not extremely
easy to expand. But it turns out that is related to important special functions, namely the
modified Bessel functions Ik(t), as described below.

 The modified Bessel functions of the first kind Ik(t) are a family of functions satisfying the equations

(2.73) d Ik(t)
d t = Ik−1(t) + Ik+1(t)

2 , with Ik(0) = δk,0 and Ik(t) = I−k(t).
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t

e−t Ik(t)
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k = 1
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k = 3
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A useful property for us of modified Bessel functions is that if we consider k � 1 and t � 1 such that
k2

t
is kept fixed, then

(2.74) Ik(t) ' 1√
2πt

et− k2
2t .

Introducing the generating function

G(z, t) :=
∞∑

k=−∞

Ik(t)zk

it turns out that
(2.75) G(z, t) = e

1
2 (z+z−1)t .
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Using the results of the box above, we can write

F (z, t) = e−t F (z, 0)G(z, t) = e−t F (z, 0)
∞∑

k=−∞

Ik(t)zk = e−t
∑

n

znPn(0)
∑

k

zkIk(t)

= e−t
∑

k

(∑
n

Ik−n(t)Pn(0)

)
zk

(2.76)

This means that
(2.77) Pk(t) = e−t

∑
n

Ik−n(t)Pn(0).

This is an interesting structure: it is telling us that the propagator to move from n to k in time
t is Qkn(t) = e−t Ik−n(t). In particular, if Pk(0) = δk 0,
(2.78) Pk(t) = e−t Ik(t).
For t � 1 and k � 1, so that k2/t is fixed, the asymptotic expression of the modified Bessel
function can give us information on Pk(t) (under the assumption X0 = 0):

Pk(t) = e−t Ik(t) ' 1√
2πt

e− k2
2t

which has Gaussian shape.

 The case of a biased one-dimensional random walker can be treated in a similar way. In such setting
the two rates are different, for example rn = λ and ℓn = µ, µ 6= λ, so that the master equation is
(2.79) Ṗk(t) = λPk−1(t) + µPk+1(t) − (λ+ µ)Pk(t).
This problem reduces to the one we have solved before, if we modify our definition of generating
function to

(2.80) F̂ (z, t) ≡ F
(√

µ

λ
z, t
)

=
∞∑

n=−∞

zkPk(t)
(
µ

λ

) k
2
.

Taking a time derivative of F̂ (z, t) and plugging the master equation we find

(2.81) ∂F̂ (z, t)
∂t

=
[
−(λ+ µ) +

√
λµ
(
z + 1

z

)]
F̂ (z, t)

which is solved by

(2.82) F̂ (z, t) = F̂ (z, 0) exp
[
−(λ+ µ)t+

√
λµ(z + 1/z)t

]
.

As you can see, the generating function of the modified Bessel functions G(z, 2
√
µλt) appears: re-

peating the arguments above, the expression can be expanded in series so that in the end

(2.83) Pk(t) = e−(λ+µ)t

∞∑
n=−∞

(
λ

µ

) k−n
2

Ik−n(2
√
λµt)Pn(0)

which indeed reduces to the expression previously found for λ = µ = 1/2. The propagator, this time,
is Qkn(t) = e−(λ+µ)t

(
λ
µ

) k−n
2 Ik−n(2

√
λµt).

Lecture 7
6.2. The effect of boundary conditions. So far we have considered the unbounded

random walker, where Ω = Z and our system can explore any possible integer position. We
consider now the presence of boundaries that confine the walker in a certain region of the state
space. We will distinguish three different cases: single boundary, double boundary, and periodic
boundary.
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Single reflecting boundary. — We start considering a single boundary, and we will focus
on the symmetric random walk. We will assume that there is a “wall” at k⋆, so that the walker
is confined in the region k ≤ k⋆: for positions in the allowed regions and not on the boundaries,
Wk±1 k = rk = ℓk = µ. We distinguish between two types of single-boundary settings, namely
reflecting and absorbing. Let us start with the case of reflecting boundary.

To make the discussion simpler, let us put ourselves in the discrete time setting first, so
that we work at time steps τ and t = 0, τ, 2τ, 3τ, . . . . In discrete time we have a Markov chain
described by a stochastic matrix Q. If there is no barrier, we fix Qk±1 k = µτ for all k, and
by consequence Qkk = 1 − 2µτ ; all other entries are zero (the walker can only jump between
neighbour sites). If there is a barrier in k⋆, instead, Qk±1 k = µτ for k < k⋆, but Qk⋆+1 k⋆ = 0
and Qk⋆−1 k⋆ = 2µτ . Also in this case Qkk = 1 − 2µτ for all k ≤ k⋆, whereas all other entries are
zero. We want to estimate P r

k(nτ) with a barrier in k⋆ imaging that X0 = 0. This probability
is the sum of all contributions of paths starting in the origin and arriving in k at time t = nτ
compatibly with the presence of the barrier. For example, for k = 0, k⋆ = 2 and n = 10, P r

0
contains the contribution of the legit path below, which I will call X
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Xt

t /
τ

The probability of observing this path in presence of the barrier is

(2.84) P[X|barrier] = (2µτ)nc(µτ)n−ns−nc(1 − 2µτ)ns = 2nc(µτ)n−ns(1 − 2µτ)ns .

In the formula above I have denoted by nc the number of times that the walker “take off from
the barrier” (in white in the picture, where nc = 2) and by ns the number of times the walker
stays where it is (in the picture ns = 2, for example). Now, it is interesting to compute what is
the probability of this path in absence of the barrier. This is

(2.85) P[X|no barrier] = (µτ)n−ns(1 − 2µτ)ns .

In other words P[X|barrier] = 2ncP[X|no barrier]. As in the example nc = 2, the contribution to
P r

k of X is 22 = 4 times what is in Pk. Such contribution can be thought of as the sum of all
2nc paths you can obtain from the original legit path by “reflecting” the nc portions in between
“take-off points” and between the last collision and the destination. For example, in our path X

there are two portions, below in red and blue. You can obtain 22 = 4 “sibling paths” reflecting
none of the portions, the first, the second, or both. The resulting 4 paths have all the same
weight in absence of the barrier P[X|no barrier] = (µτ)n−ns(1 − 2µτ)ns :
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Such sibling paths lead to k or to 2k⋆ − k, so that half of them are counted in Pk and half
of them in P2k⋆−k. As they are 2n0 , summing their (equal) contribution automatically takes
into account the combinatoric prefactor. This seems to suggest that to compute Pk(t) we need
to sum all contributions contained in Pk(t) and all contributions contained in P2k⋆−k, which is
indeed the case. Every legit path corresponds to a family of paths counted in Pk(t) and P2k⋆−k,
and vice versa every single path counted in Pk(t) or P2k⋆−k(t) is a member of a unique family
corresponding to a legit path. For example, for k⋆ = 2 and n = 10, starting from the path

−1 0 1 2 3 4 50
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10

Xt

t /
τ

it has nc = 3 (in white) and we can uniquely construct its family of 2nc = 8 siblings in which one,
and only one of them, lies in the k < k⋆ half-plane and correspond to a legit path in presence of
a barrier:
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As a result, we can write our law for P r
k as

(2.86) P r
k(t) = Pk(t) + P2k⋆−k(t) t = nτ, n ∈ N.

The relation holds for τ → 0 as well, so that we can use it in the case of continuous time random
walks as well, with transition rates

(2.87) ℓk=rk=lim
τ→0

Qk±1k

τ
=µ for k<k⋆, rk⋆=lim

τ→0

Qk⋆±1k

τ
=0, ℓk⋆=lim

τ→0

Qk⋆−1k

τ
=2µ.

Single absorbing boundary. — In the case of an absorbing barrier, when the walker hits
the wall, approaching from the left, it will be ‘absorbed’ by the wall and removed from the
system. Computing the probability P a

k (t) that the walker is in a location k < k⋆ in the presence
of an absorbing boundary with similar arguments as before. First, we start observing that Pk(t)
contains all paths getting to k. Some of them never touch the boundary (and therefore have to be
counted). Some of them instead touch it and have to be discarded from Pk(t). The observation
is that each of these paths can be associated with a path going to 2k⋆ − k and, vice versa: it is
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enough to reflect the entire original path after the first contact with the barrier. For example,
the (forbidden) path below is put next to its reflected version.
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Again, the two paths “weights” are the same as we assumed that the rates to go left and right are
equal. Therefore to get P a

k we need to subtract the contributions of the forbidden paths which
is equal to P2k⋆−k(t), i.e.,
(2.88) P a

k (t) = Pk(t) − P2k⋆−k(t).
Note that by construction P a

k⋆(t) = 0 for all t, meaning that the walker is removed from the
system when it reaches the wall.

Double reflecting barrier. — Finally, let us consider the case of two reflecting boundaries,
for example one at k = 0 and one at k = K. In this setting let us consider the generic case of
asymmetric walker, so with different rates of going left and right.
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In the presence of such barriers, ℓ0 = r−1 = 0, ℓK+1 = rK = 0. Using generating functions and
shifting indices becomes cumbersome, and gives undesired boundary terms. As the number of
states, it is finite (because of the boundaries, Ω = {0, 1, . . . ,K}) we can write down the master
equation in vector notation reads

d |P (t)〉
d t

= W |P (t)〉 =


−λ µ 0 . . . . . . 0
λ −(λ+ µ) µ 0 . . . 0
0 λ −(λ+ µ) µ 0 0
...

...
...

...
...

...
0 . . . . . . 0 λ −µ

 |P (t)〉

and finding the solution boils down to computing eigenvalues and eigenvectors of a tri-diagonal
matrix. The stationary distribution in particular solves W |Π〉 = |0〉 that gives us the following
set of equations

(2.89) λΠk = µΠk+1 ⇒ Πk = λ

µ
Πk−1 = . . . =

(
λ

µ

)k

Π0

Setting ρ = λ/µ and using the sum of a geometric series we have

(2.90) 1 =
N∑

k=0

Πk = Π0

K∑
k=0

ρk = Π0
1 − ρK+1

1 − ρ
⇒ Π0 = 1 − ρ

1 − ρK+1 .



46 2. CONTINUOUS-TIME MARKOV PROCESSES

and from this we can compute any Πk.
Queues. — In queueing theory, one has often to deal with, e.g., requests arriving on a

server or customers entering in a shop at a certain rate λ, and orders being processed at a
rate µ. This is often referred to as M/M/1 process (memoryless arrival, memoryless departure
and 1 server) and it can be generalized to more servers. This problem sounds like the problem
of the (asymmetric) random walk we considered above, so that each arriving customer makes
Nt increase by one, and each “processed” operation makes Nt decrease by one. One may be
interested, e.g., in the number Nt of customers waiting at any time t, or, more interestingly, to
its average E[Nt] when the process reaches stationarity. This require computing the stationary
distribution, in the presence of a reflecting boundary at k = 0 (as the number of jobs cannot be
negative). On the other hand, there is no upper bound on the number of jobs arriving, and one
can take K → ∞. Clearly, in this limit, a steady state only exists for ρ < 1, otherwise the queue
grows indefinitely. Taking the limit K → ∞ in (2.90) we have Π0 = 1 − ρ so the steady-state
distribution is
(2.91) Πk = ρk (1 − ρ)
The average number of customers waiting at stationarity follows as

(2.92) E[Nt] = (1 − ρ)
∞∑

k=1

kρk = (1 − ρ)ρ d
d ρ

∞∑
k=0

ρk = ρ

1 − ρ
.

Periodic boundary conditions. — Periodic boundary conditions consist in identifying
the state k = 0 with the state k = K, so that the random walker can be thought of as jumping
between the sites of a ring lattice, with sites k = 1, 2 . . . ,K ≡ 0. The master equation
(2.93) Ṗk(t) = λPk−1(t) + µPk+1(t) − (λ+ µ)Pk(t)
holds for all 1 ≤ k ≤ K, with the identification of K ≡ 0, and it can be solved again by a
generating function formalism, with the generating function now taking the form of a discrete
Fourier transform, which reflects the spacial periodicity of the system.

The steady-state is clearly given by Πk = 1/K ∀ k, as inserting this
expression in (2.93) makes both the RHS and LHS equal to zero. However,
the detailed balance condition (2.89) is violated for any λ 6= µ, i.e., ρ 6= 1,
by the boundary condition ΠK = Π0, as

(2.94) ΠK =
(
λ

µ

)K

Π0 = ρKΠ0 6= Π0.

In other words, for ρ 6= 1, the uniform distribution is not an equilibrium
stationary state. Note how the steady-state solution for periodic boundaries was not valid for
reflecting boundaries, as it would have violated the steady-state equations Ṗ1 = ṖK = 0 in that
case.

Let us now calculate the time-dependent distribution of a random walker with periodic
boundary conditions. The crucial tool will be the discrete Fourier transform, which will serve
as the generating function to solve equations (2.93). The discrete Fourier transform of Pk(t) is
defined as

(2.95) P̂u(t) :=
K∑

k=1

Pk(t) e 2πik
K u, u = 1, . . . ,K.

The discrete Fourier transform can be inverted using the formula

(2.96) Pk(t) := 1
K

K∑
u=1

P̂u(t) e− 2πik
K u, k = 1, . . . ,K.
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Proceeding similarly to the case of the unbounded random walker, we manipulate the set of
master equations, multiplying both terms by e 2πik

K u and summing over k,
K∑

k=1

Ṗk(t) e 2πik
K u =

K∑
k=1

[λPk−1(t) + µPk+1(t) − (λ+ µ)Pk(t)] e 2πik
K u

in such a way to obtain a PDE for P̂u(t),

d P̂u(t)
d t

= αuP̂u(t), αu := λ
(

e− 2πiu
K −1

)
+ µ

(
e 2πiu

K −1
)
.

which is solved by
P̂u(t) = eαkt P̂u(0)

The time-dependent solution is obtained taking the inverse discrete Fourier transform,

(2.97) Pk(t) = 1
K

K∑
u=1

P̂u(t) e− 2πik
K u = 1

K

K∑
u=1

P̂u(0) e− 2πik
K u+αut .

Observe now that <[αu] < 0 ∀u 6= K, and αK = 0. Singling out the contribution from k = K in
(2.97) we obtain

Pk(t) = 1
K
P̂K(0) + 1

K

K−1∑
u=1

P̂u(0) e− 2πik
K u+αut

Note now that, because of the normalisation of |P (0)〉, P̂K(0) = 1 hence for large time limt→∞ Pk(t) =
1/K ∀k as expected. Each Fourier mode u 6= K will decay exponentially as e−t/τu , with a rate
τu = |<[αu]|−1. For u finite and large K

(2.98) αu=λ
(

e− 2πiu
K −1

)
+µ
(

e 2πiu
K −1

)
=−(λ−µ)2πiu

K
−(λ+µ)4π2u2

K2 +o
(

1
K2

)
,

so that the first term is imaginary and gives raise to an oscillatory contribution in the time-
dependent probability (due to a probability flux through the ring when λ 6= µ), while the second
term gives an exponential decay (to the equilibrium distribution). Hence the equilibration time
can be read off as τ ∼ K2. As we will see, this relation exhibits the typical dynamic exponents
of a diffusion process. In practice, this means that the number of time-steps we would expect to
run a simulation for, on a large ring, to reach equilibration, increases quadratically in the system
size.

7. Birth–death processes

In this section we will study a final example of jump processes. Birth–death processes are
processes appearing in the modeling of a variety of phenomena in which the focus is the dynamics
of a population (of individuals, or chemical compounds) subject to some evolution laws. Consider
for example a population of individuals or ‘particles’ • which evolves stochastically via offspring
production and spontaneous death. Each particle may undergo one of the following ‘reactions’

(2.99) • →

{
• + • reproduction at rate λ per particle,
∅ death at rate µ per particle.

Let Nt be the number of particles at time t. Since reactions occur stochastically, the evolution of
Nt is random, and Nt is indeed a stochastic process. Clearly, Nt takes values in N0 := {0, 1, 2, . . .}.
The transition rates from a state with n particles to a state with n+ 1 and n− 1 particles are,
respectively,

rn = λn, ℓn = µn
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Since both rates are proportional to n, n = 0 is an absorbing state, as there are no transitions
out of it. This means in particular that detailed balance is not satisfied, as there is probability
flow into the extinction state but not out of it. The dynamics will therefore be always a non-
equilibrium process. Denoting Pn(t) := P[Nt = n], the master equation is given by

(2.100) Ṗn = λ(n− 1)Pn−1 + µ(n+ 1)Pn+1 − (λ+ µ)nPn

and, precisely as we have done before for other processes, it can be solved via the generating
function F (z, t) =

∑∞
n=0 z

nPn(t). In this setting, we will be particularly interested in one
specific probability, namely the extinction probability P0(t) = F (0, t), or the survival probability
1 − P0(t) = 1 − F (0, t).

Getting a PDE for the generating function from the set of coupled master equations can be
done following the same steps that we followed for the Poisson processes and for random walks.
As usual, we will have boundary condition F (1, t) = 1 ∀ t, due to the normalization of Pn.
Proceeding in the standard way, we get

(2.101)
∑
n≥0

Ṗnz
n=
∑
n≥0

[λ(n−1)Pn−1+µ(n+1)Pn+1−(λ+µ)nPn]zn=⇒

∂tF (z, t) = λz2
∑
n≥1

(n− 1)zn−2Pn−1 + µ
∑
n≥0

(n+ 1)znPn+1 − (λ+ µ)z
∑
n≥0

nzn−1Pn.

Although the prefactors n and n ± 1 do not allow to express the RHS in terms of F , they will
allow to express the RHS in terms of its derivative, via the following manipulations

(2.102) ∂tF (x, t) = λz2∂z

∑
n≥1

zn−1Pn−1 + µ∂z

∑
n≥0

zn+1Pn+1 − (λ+ µ)z∂z

∑
n≥0

znPn

= λz2∂z

∑
n≥0

znPn + µ∂z

∑
n≥0

znPn − (λ+ µ)z∂z

∑
n≥0

znPn.

We have shifted n − 1 → n in the first term of the RHS, as the upper bound is infinite, and
n+ 1 → n in the second term, which can therefore be written as

∑
n≥1 z

nPn =
∑

n≥0 z
nPn −P0.

We can finally obtain a closed equation for F

(2.103) ∂tF (z, t) = µ(1 − z) (1 − ρz) ∂zF (z, t), ρ := λ/µ.

We solve for the initial condition Pn(0) = δn,n0 i.e., F (z, 0) =
∑

n z
nPn(0) = zn0 , using the

method of characteristics.

 The method consists in finding a parametrization z(s), t(s) of the variables of F such that
dF
d s = ∂F

∂t

d t
d s + ∂F

∂z

d z
d s .

Comparing with (2.103) and equating the coefficients of the derivatives we obtain
d t
d s = 1,(2.104)

d z
d s = −µ(1 − z)(1 − ρz),(2.105)

dF
d s = 0.(2.106)

Eliminating the s parameter, we obtain a system of two ODEs

(2.107) dF
d z = 0, d z

d t = −µ(1 − z)(1 − ρz)
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Separating variables and integrating by using partial fractions (in the case ρ 6= 1, i.e., λ 6= µ — the
case ρ = 1 does not require partial fractions), we have

(2.108) F = c1


1 − z

1 − ρz
= c2 e−µt(ρ−1) ρ 6= 1

1
1 − z

= c2 − µt ρ = 1

where c1 and c2 are constants of integration. From now on, we will have to distinguish the case ρ 6= 1
and ρ = 1. We know from the method of characteristics that c1 = ϕ(c2) for some function ϕ to be
identified.

(2.109) F =

{
ϕ
(

1−z
1−ρz

eµt(ρ−1)) ρ 6= 1
ϕ
(

1
1−z

+ µt
)

ρ = 1

where ϕ is, as yet, an unknown function, that we shall get from the initial conditions. Using F (x, 0) =
xn0 ,

(2.110)

{
zn0 = ϕ

(
1−z

1−ρz

)
⇒ ϕ(z) =

(
z−1

ρz−1

)n0
ρ 6= 1

zn0 = ϕ
(

1
1−z

)
⇒ ϕ(z) =

(
1 − 1

z

)n0
ρ = 1.

Inserting this in (2.109), we finally get

(2.111) F (z, t) =


(

(1−ρz) eµ(1−ρ)t +z−1
(1−ρz) eµ(1−ρ)t +1/ρ(z−1)

)n0
ρ 6= 1(

1 − 1−z
1+(1−z)µt

)n0
ρ = 1

Using the obtained solution

(2.112) F (z, t) =


(

(1−ρz) eµ(1−ρ)t +z−1
(1−ρz) eµ(1−ρ)t +1/ρ(z−1)

)n0
ρ 6= 1(

1 − 1−z
1+(1−z)µt

)n0
ρ = 1

the extinction probabilities P0(t) = F (0, t) follows as

(2.113) P0(t) =


(

eµ(1−ρ)t −1
eµ(1−ρ)t −1/ρ

)n0
ρ 6= 1,(

1 − 1
1+µt

)n0
ρ = 1.

For large time, we have

(2.114) P0(t) ∼


ρ−n0 + eµ(ρ−1)t ρ > 1,
1 + e−µ(1−ρ)t ρ < 1
1 − n0

µt ρ = 1.

showing that P0(∞) = 1 for ρ ≤ 1, i.e. extinction is a sure event for λ ≤ µ, however, it is also
possible for λ > µ. We note that for µ 6= λ the steady-state is approached with an exponential
rate, τc = |µ− λ|−1. However, for ρ → 1, τc → ∞ and the approach to the steady-state is much
slower, i.e., power-law like. This is reminiscent of the so-called “critical slowing down’ around a
“critical point” (in this case, ρ = 1) in statistical physics, a phenomenon normally observed in
second order phase transitions.

The asymptotic survival probability can be also computed as

P[N∞ > 0] := 1 − lim
t→∞

P0(t) =

{
1 − ρ−n0 ρ > 1,
0 ρ ≤ 1.
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 It is worth noting that a “mean-field approximation” Nt ' E[Nt] would miss the possibility of
extinction at λ > µ. Such mean-field approximation is obtained writing an equation for E[Nt],
obtained by multiplying the master equation by n and summing over n. Unsurprisingly, the equation
for the first moment closes due to the linearity of the rates
(2.115) ∂tE[Nt] = −µ(1 − ρ)E[Nt].

The solution E[Nt] = n0 e−µ(1−ρ)t indicates a demographic explosion at µ < λ, extinction at µ > λ
and a constant population size n0 for µ = λ. However, fluctuations about the average are important
and make the mean-field description inaccurate. In particular, ODEs like (2.115) do not capture well
the behaviour of discrete systems, which evolve by discrete jumps, rather than infinitesimal variations,
especially when the population size is small, and a stochastic jump can wipe out the entire population.

 Show that Eq. (2.115) can be obtained from the equation for F (z, t) taking the derivative
with respect to z and imposing z = 1.

7.1. Chemical reaction kinetics. Linear chemical reaction kinetics may also be regarded
as linear birth-death processes. One such example is provided by the stochastic transitions of
the molecules of a chemical specie between two conformational states, X to Y, upon interaction
with another molecule A

A + X c1−⇀↽−
c2

A + Y.

If we denote Nt the number of molecules X at time t, NA the number of molecules A (kept
fixed) and N the number of molecules X and Y assumed to be constant, we can write the master
equation for Pn(t) = P[Nt = n] as
(2.116) Ṗn = c2NA(N − n+ 1)Pn−1 + c1NA(n+ 1)Pn+1 −NA(c1n+ c2(N − n))Pn.

This is linear and can be solved by applying the generating functions method. However, most of
times master equations for chemical reaction kinetics are non-linear and cannot be solved exactly.
We provide below an example.

 Example For the chemical reactions
X + X c1−→ ∅, X c2−→ X + X

the master equation for the number Nt of molecules X is

(2.117) Ṗn = c1
(n+ 1)(n+ 2)

2 Pn+2 + c2(n− 1)Pn−1 −
(
c1
n(n− 1)

2 + c2n

)
Pn.

Due to non-linearities, the equation for the first moment does not close

(2.118) d
d tE[Nt] = (c1 + c2)E[Nt] − c1E[N2

t ].

Closure can be achieved with a mean-field approximation E[N2
t ] ' E[Nt]2,

(2.119) d
d tE[Nt] ≈ (c1 + c2)E[Nt] − c1E[Nt]2.

This predicts a stable fixed point E[Nt] = 1 + c2/c1, however, there is clearly a finite probability that
the system goes extinct, that is not captured by the mean-field approximation.

 The Gillespie algorithm When master equations cannot be solved analytically, one may wish
to take recourse to numerical methods. We consider a system of K chemically reactive species Xi,
i = 1, . . . ,K, which can react with each other via M reactions Rµ, µ = 1, . . . ,M , each with its own
rate cµ. We denote with Ni the number of molecules of species Xi and with N = (N1, . . . ,NK) the
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state of the system. Furthermore, we indicate with νµ the change in N produced by reaction Rµ (as
given from the stechiometric coefficients), e.g. νµ

i = −3 means that, by effect of the reaction Rµ, the
Ni → Ni − 3. Finally, we denote with hµ(n) the number of ways in which Rµ can be realized in state
n, e.g., in the reaction X1 + X1 → X2, there are 1

2n1(n1 − 1) ways in which the reaction can take
place. In order to derive the chemical master equation, we introduce the so-called propensity function
Wµ(n) = cµhµ(n), such that
(2.120) Wµ(n) d t = P

[
Rµ takes place in the interval [t, t+ d t)

∣∣Nt = n
]

The chemical master equation is then

(2.121) ∂tPn(t) =
∑

µ

[Wµ(n− νµ)Pn−νµ (t) −Wµ(n)Pn(t)]

An efficient way to simulate such master equation is via the Gillepsie algorithm. The starting
point of the algorithm is the definition of the so-called ‘next-reaction density function’

(2.122) ρ(Rµ, τ |n, t) d t = P
[
Rµ happens in [t+ τ, t+ τ + d t)

∣∣∣Nt = n
]
.

It is reasonable to assume that τ and µ are conditionally independent. Hence, since the distribution
of waiting times in memoryless processes is exponential, we can write

(2.123) ρ(Rµ,τ |n,t)=P
[
Rµ happens

∣∣∣Nt=n
]
P
[
Something happens in [t+τ,t+τ+dt)

∣∣∣Nt=n
]

= Wµ(n)
W (n)︸ ︷︷ ︸

ρ(Rµ|n)

W (n) e−W (n)τ︸ ︷︷ ︸
ρ(τ |n)

, W (n) :=
∑

µ

Wµ(n).

The Gillespie algorithm consists in iteratively sampling the next reaction time and type and executing
it, as exemplified by the pseudocode below:

(1) Set t = 0. Initialize the system in n = n0.
(2) Draw (τ, µ) from the distribution ρ(Rµ, τ |n, t). Set t = t+ τ .
(3) Execute n 7→ n+ νµ

(4) Go back to (2).
To realize step 2, one draws τ and µ independently, each from its distribution ρ(Rµ|n) and ρ(τ |n)
respectively. To efficiently sample τ from ρ(τ |n) we note that

p = P[Something happens in time < τ ] =
τ∫

0

W (n) e−W (n)t d t = 1 − e−W (n)τ .

Rearranging,
τ = 1

W (n) ln 1
1 − p

Hence, at each iteration of the algorithm, we can draw p uniformly at random in (0, 1) and set
τ = 1

W (n) ln 1
1−p

.
As a final remark, we note that the Gillespie algorithm does not solve the master equation, but it

simulates a sample path n(t) of the Markov process, so one needs to run many statistically indepen-
dent simulations (with the same n(0) and the same final t) to get a statistics, i.e. a distribution, for
n(t). We also note that for large systems, the exponential rate W (n) will typically get large, and the
sampled time steps very small, so one may need to execute a large number of iterations to simulate
the evolution of the system on a finite time span. This may get impractical for many particles and
many reactions.





CHAPTER 3

Dynamics of spin systems

Abstract. In this chapter, we will study the dynamics of systems with many interacting
binary units. In other words, our stochastic variable will be a N -dimensional vector σ =
(σ1, . . . ,σN ). Each σi corresponds to a unit in a system with N components and takes value
σi = +1 (‘active’) or σi = −1 (‘inactive’). Many systems can be modeled in these terms, from
financial systems (where agents can buy or sell financial products) to gene-regulatory networks
(where genes can be expressed or not expressed), from neural networks (where neurons can
either fire an electrical signal or stay quiescent) to epidemiological models (where individuals
are either infected or susceptible). The units usually interact according to complex patterns1.
In the realm of such models, the Ising model plays the role of prototype for many systems.
In this model, the N units are organized on a graph, and are regarded as the atoms of some
material. The unit σi indicates the orientation of the magnetic momentum (or ‘spin’) of an
atom (for simplicity taken as pointing up or down). We will refer therefore to the binary units
σ as spins.

1. Neural Networks Lecture 8
Let us consider a system of N neurons. Each neuron i is represented by a variable σi, such

that σi = +1 if the neuron is firing, σi = −1 if the neuron is quiescent. We assume now that an
“output neuron” σ collects the information about the neurons σ = (σi)i according to this simple
rule

(3.1) σ = sign

∑
j

Jjσj + θ

 = sign (〈J |σ〉 + θ) .

This is a fundamental architecture called perceptron and has been introduced by McCulloch and
Pitts to simulate the action of biological neurons. As you can see, the output σ, representing the
state of the neuron itself, is influenced by a ‘local field’ resulting from the state of other neurons

(3.2) h(σ) :=
∑

j

Jjσj + θ.

The quantities Jj measure the influence of the neuron j on the output neuron. If Jj > 0,
the neuron j will ‘encourage’ the output neuron to take its same sign, otherwise will induce a
disagreement. The quantity θ can be thought of as a ‘bias’ of the output neuron: if there were
no other neurons, σ would just be the sign of θ. Pictorially, for N = 3,

σ1

σ2

σ3

σ sign (J1σ1+J2σ2 +J3σ3+θ)

For N = 2, the perceptron can execute logic operations such as AND, OR, and NOT for ap-
propriate choice of J0j , j = 1, 2, and θ0. In particular, it can execute any linearly separable
operation.

53
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 The condition J1σ1 + J2σ2 + θ > 0 defines a halfplane in the (σ1, σ2) plane:

σ1

σ2

The border of this region is exactly given by the line J1σ1 + J2σ2 + θ = 0, and we can arrange it in
a way that the output is the one we desire. For example, suppose that we want to implement the
AND function. This means that we want σ = +1 if σ1 = σ2 = +1, and σ = −1 otherwise. In the
plot above, we represented this desired output coloring in black the dot corresponding to the input
values giving output +1 using AND. Any straight line that separates the black dot from the white dots
gives this kind of output. If we have instead the XOR function, i.e., σ = −σ1σ2, this is non-linear and
corresponds to the plot

σ1

σ2

It is clear that this time we cannot separate white and black dots using a single straight line.

In order to execute operations that are not linearly separable, like the XOR logic gate, one
needs at least one layer of neurons, sometimes called the “hidden” layer, between the input and
the output neurons, i.e., an architecture of the following type

σ1

σ2

σ3

σ

Hidden
layer

Input
layer

Output
layer

Each link in the picture corresponds to a coupling J to be carefully chosen so that the output
corresponds to the desired one. Such networks used are normally ‘feed-forward’, i.e., the signal
goes from the input layer toward the output layer moving from one layer to the next one. Deep
neural networks are feed-forward networks with many layers. Training a neural network to
execute a certain operation means to find a suitable set of couplings J and thresholds θ, such
that the neuron in the output layer returns the right value associated to each input. When this
occurs, we say that the network has ‘learnt’ to execute the task. Suppose for example that we
want to train our network, let us call it ϕJ (σµ) (assume for simplicity that the thresholds are
given and fixed), to reproduce some function f(σ) which we do not know exactly. What we know
is a set of n examples, σµ, that we know correspond each to a certain output yµ = f(σµ). For
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each of these examples, our network gives us the output ϕJ (σµ), so that the error over the set
of n examples can be quantified as

(3.3) ℓ(J) := 1
n

n∑
µ=1

(yµ − ϕJ (σµ))2

We need to find J such that this error is as small as possible, i.e., we need to find J⋆ =
arg minJ ℓ(J). The simplest way is to take a gradient and impose ∇Jℓ(J) = 0. Learning
algorithms try to achieve such minima: observe that they generally converge to a local minimum
of the error function, where the weights will in reproduce well the training dataset, but may
generalise poorly (i.e., may have poor performances on unseen inputs). Theoretical and empirical
studies of the predictive abilities and limitations of deep neural networks or in general neural
networks with a huge number of parameters J constitutes nowadays an intense research field.

1.1. Neural networks as associative memories. Neural networks can be used to per-
form different types of tasks. One of them is storing and retrieving memories, and we will
precisely study the dynamics of these networks to retrieve stored configurations. In order to use
neural networks as associative memories, they must be able to store a multiplicity of patterns.
Memorised patterns are thought of as stable attractors of the neural network dynamics: if the
neural network is initialised in a configuration that is ‘close’ to one of the stored patterns, the
network dynamics will converge to it and we will say that the network has ‘retrieved’ the pattern
associated to the initial configuration.

If the neural network dynamics can be cast into a gradient-descent on an energy landscape,
then memorised patterns will correspond to the local minima of the energy landscape. Feedback
loops are a desired feature in these networks: they are a necessary ingredient to have many local
minima in the energy landscape: if the spin i and j are connected, then the dynamic of i will be
influenced by the dynamic of j and vice versa (at difference with feed-forward networks, used for
learning, where each spin is influenced by the spins of the previous layers but not of the next).
In a neural network used as associative memory, spins are on some graph G and they are subject
to an evolution in time of the type

(3.4) σi(t+ τ) = sign

∑
j

Jijσj(t) + θi + β−1ηi(t)

 ≡ sign
[
hi(σ(t)) + β−1ηi(t)

]
,

at discrete time steps t = τ, 2τ . . . . The law above is the same used in (3.1) for the learning task.
We have also introduced ηi(t) that is a random noise, e.g., a stochastic process independent from
the dynamics of the spin, with E[ηi(t)] = 0, E[η2

i (t)] = 1 drawn from a symmetric distribution,
i.e., P[η(t) ≥ 0] = P[η(t) ≤ 0]. One can interpret β−1 > 0 as a noise level, i.e., a measure of
the intensity of the noise: for β−1 = 0 the dynamics is deterministic, while for β−1 = ∞ the
dynamics is fully stochastic, ruled by the noise η. Due to the presence of the noise term, the
update equations have probabilistic form. From (3.4), and using the symmetry of the distribution
of η, we have

P1|1[σi(t+τ)=1|σ(t)=σ]=P[η(t)>−βhi(σ)],
P1|1[σi(t+τ)=−1|σ(t)=σ]=P[η(t)<−βhi(σ)].

(3.5)

A natural choice for the noise distribution would be a Gaussian. In this case P[η > x] = 1
2 erf(x).

A qualitatively very similar choice, which makes calculations simpler, is the Glauber choice
P[η > x] = 1−tanh(x)

2 which leads to

P1|1[σi(t+ τ) = σ|σ(t) = σ] = 1 + σ tanh (βhi(σ))
2
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With this choice, the above expression can be rewritten

P1|1[σi(t+ τ) = σ|σ(t) = σ] = eβσhi(σ)

2 cosh(βhi(σ))
= 1

1 + e−2βσhi(σ)

and the average value of a neuron state is then E[σi(t + τ)]σ(t)=σ = tanh βhi(σ). Now that
we have this transition probability, we can make different choices for the evolution of the spin
network.

1.2. Parallel dynamics. We say that the network evolves via parallel dynamics if all of
the neurons in the network are updated at the same time (i.e., synchronously), at regular time
intervals of duration τ . In this case, assuming the Glauber rule, we have

(3.6) Qσ′ σ := P1|1[σ(t+ τ) = σ′|σ(t) = σ] =
N∏

i=1

eβσ′
ihi(σ)

2 cosh(βhi(σ))
.

It is clear now that we can write the dynamics as a Markov chain for the probability Pσ(t) :=
P[σ(t) = σ],

Pσ′(t+ τ) =
∑
σ

Qσ′ σ(τ)Pσ′(t)

with transition matrix Q(τ). Each row/column of Q(τ) corresponds to a configuration of the
system, and, if there are N spins, there are 2N possible configurations, i.e., Q(τ) is 2N × 2N ,
that for large N is a huge number: even finding the stationary distribution is then a formidable
task. However, a simplification arises when interactions are symmetric, i.e., Jij = Jji ∀ i, j. In
this case it is possible to show that Q(τ) satisfies detailed balance with

Πσ = e−βH(σ)

Z
, Z :=

∑
σ

e−βH(σ),

where

H(σ) = −
N∑

i=1

[
θiσi + β−1 ln cosh(βhi(σ))

]
is a ‘pseudo-Hamiltonian’2.

1.3. Sequential dynamics. Another possibility is to update the network as follows:
(1) at time t, select a spin i at random in {1, . . . , N}, i.e., with probability 1/N;
(2) update it using a transition probability P1|1[σi(t+ τ) = σ|σ(t) = σ];
(3) t+ τ 7→ t and go to step (1).

In this case we say that the network is updated via sequential (or asynchronous) dynam-
ics: transitions only occur between configurations that differ by a single spin flip, e.g., σ =
(σ1, . . . , σi, . . . , σN ) → Fiσ = (σ1, . . . ,−σi, . . . , σN ), with Fi the i-spin flip operator. Defining
now the probability to flip neuron i

(3.7) QFiσ,σ(τ) := 1
N

P1|1[σi(t+ τ) = −σi|σ(t) = σ] = 1 − σi tanh βhi(σ)
2N

≡ Wi(σ)
N

.

Let us take now the τ → 0 limit and write down a master equation for the process. We also
consider N → +∞ and we combine these two limits choosing τ = 1/N → 0. Let us introduce
then our transition rates, using the definition

(3.8) WFiσ σ = lim
N→+∞

QFiσ,σ(1/N)
1/N

= Wi(σ).

2The specification ‘pseudo’ is due to the fact that H retains a dependence on β.
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The quantities Wi(σ) are called Glauber transition rates and the master equation is obtained
immediately as

(3.9) ∂tPσ(t) =
N∑

i=1

[
Wi(Fiσ)PFiσ(t) −Wi(σ)Pσ(t)

]
.

1.3.1. The equilibrium distribution. We show that for Jij = Jji and Jii = 0, the Glauber
transition rates satisfy detailed balance with Πσ = 1

Z e−βH(σ), where

H(σ) = −1
2
∑
i 6=k

Jikσiσk −
∑

i

θiσi.

To prove detailed balance

ΠσWi(σ) = ΠFiσWi(Fiσ) ⇔ Wi(σ)
Wi(Fiσ)

= e−β[H(Fiσ)−H(σ)] .

It is convenient to define ĥi(σ) :=
∑

k Jikσk and write

H(σ) = −1
2
∑

k

σkĥk(σ) −
∑

k

θkσk.

We note that ĥi(σ) does not depend on σi (because Jii = 0) and therefore ĥi(Fiσ) = ĥi(σ) and
ĥk(Fiσ) − ĥk(σ) = −2Jkiσi. Therefore

(3.10) H(Fiσ) −H(σ) = −1
2
∑
k 6=i

σk(ĥk(Fiσ) − ĥk(σ)) + 1
2
σi(ĥi(Fiσ) + ĥi(σ)) + 2θiσi

=
∑
k 6=i

Jkiσkσi + σiĥi(σ) + 2θiσi = 2σi

∑
k 6=i

Jki + σkθi

 = 2σihi(σ).

Using 1±tanh x
2 = e±x

2 cosh x , we can write

(3.11) ΠFiσ

Πσ
= e−β[H(Fiσ)−H(σ)] = e−2βσihi(σ)

= e−βσihi(σ)

eβσihi(σ) = 1 − tanh βσihi(σ)
1 + tanh βσihi(σ)

= 1 − σi tanh βhi(σ)
1 + σi tanh βhi(σ)

= Wi(σ)
Wi(Fiσ)

.

This proves that Glauber rates satisfy detailed balance with the Boltzmann distribution. Hence,
for symmetric interactions and no self-interactions, we can determine the equilibrium distribu-
tion by appealing to the detailed balance condition, without solving the master equation. For
asymmetric interactions, in contrast, such simplification does not arise, and one would have in
principle to solve the master equation. However, due to the large dimensionality of the system,
even computing its steady-state Πσ is very hard. A strategy that is generally used with non-
equilibrium systems, is to get, from the master equation, a closed set of equations for averages
and fluctuations of a suitable set of observables, ideally providing a coarse-grained description
of the system. This is not always possible, but it can normally be done for one-dimensional or
fully connected systems, where the mean-field approximation becomes exact, and for particular
structures of the interactions.
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1.3.2. Equations for the averages. From the master equation

(3.12) ∂tPσ(t) =
∑

k

[
Wk(Fkσ)PFkσ(t) −Wk(σ)Pσ(t)

]
one can derive equations for the averages of observables like E[Aσ(t)] =

∑
σ AσPσ(t). We start

with E[σi(t)] =
∑

σ σi Pσ(t):

(3.13) ∂tE[σi(t)] =
∑

k

∑
σ

Wk(σ)Pσ(t)
(
Fkσi − σi

)
= −2E[Wi(σ)σi]

which is intuitively equal to the change, in the neuron state, upon a single flip −2σi, times the
flipping probability. Inserting the expression for the Glauber rate Wi(σ) = 1

2 [1−σi tanh βhi(σ)],
we have
(3.14) ∂tE[σi] = −E[σi] + E[tanh βhi(σ)]

The complication is that, while hi(σ) =
∑

k Jikσk + θi is a linear function of the neuron states,
tanh βhi(σ) makes the equations non-linear, so the equations do not generally close. However,
one may be able to close the equation within a mean-field approximation, where the effective field
is replaced with its average hi(σ) → E[hi(σ)] =

∑
k JikE[σk] + θi. This approximation ignores

the fluctuations of the effective field about its average, and it becomes exact if the sum over k is
over a large number of terms (so that the random fluctuations on average cancel out).

2. Dynamics in simple ferromagnets

In this Section we will specify the form of hi(σ) and derive the dynamics in the case of
ferromagnetic interactions Jij ≡ J > 0. We will consider two prototypical model, the one-
dimensional Ising model and the Curie–Weiss model.

σ1

σ2

σ3
σ4

σ5

σ6

σ7
σ8

σ9

2.1. The one-dimensional Ising ferromagnet. The equation
above are very generic and to attempt a more explicit computation we
need to make some assumption on the structure of hi(σ). The simplest
model one can consider is the one-dimensional Ising ferromagnet, where
the spins are imagined to be on a circumference, and each spin interacts
with two neighbours via couplings J > 0, which are identical for any pair
of spins, so

hi(σ) = J

2
σi−1 + J

2
σi+1.

Using tanh(ϵx) = ϵ tanh(x) for ϵ = 0, ±1, and denoting γ = tanh(βJ), this means that

Wi(σ) =
1 − σi tanh

(
βJ σi−1+σi+1

2

)
2

= 1
2

(
1 − σi

σi−1 + σi+1

2
tanh(βJ)

)
= 1

2

(
1 − γσi

σi−1 + σi+1

2

)
.

(3.15)

 Since interactions are symmetric the equilibrium distribution is of Boltzmann-type with Hamil-
tonian

H(σ) = −J

2
∑

i

σi(σi−1 + σi+1) = −J
∑

i

σiσi+1.
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Let us now adapt Eq. (3.14) to the current case:

(3.16) ∂tE[σi] = −E[σi] + γ
E[σi−1] + E[σi+1]

2
.

If we call for brevity mi(t) := E[σi(t)] the magnetisation of the spin i, this means that we have
obtained the set of equations

(3.17) ∂tmi(t) = −mi(t) + γ
mi−1(t) +mi+1(t)

2
, i = 1, . . . , N.

From this equation we can extract many information about the dynamics of the system.
2.1.1. Single spin magnetisation. We have already met Eq. (3.17) when working on random

walks. Solving for the initial condition mk(0) = δk 0 (corresponding to an ‘up’ spin at the origin,
in a sea of ‘undecided’ spins) we obtain the solution

mk(t) = Ik(γt) e−t ∼ e−(1−γ)t e− k2
2γt

√
2πγt

.

If β is finite (e.g., non-zero temperature), then γ < 1, hence all the local magnetizations decay
exponentially to zero with rate τr = (1−γ)−1. Conversely, at β = +∞ (zero temperature), γ = 1,
and the decay is no longer exponential but power-law, indicating critical slowing down. At zero
temperature, the local magnetization, depends on the space k and time t variables, through a
special combination, i.e., according to the scaling form

mk(t) ' e− k2
2t

√
2πt

= 1√
t
f

(
k2

2t

)
.

This decays algebraically, as t−1/2, for k2 � t, while for k2 � t it decays exponentially. The
scaling form of mk(t) suggest self-similarity, i.e. if one rescales distances (from the origin) k
with time, the value of the scaling function f is unchanged. This is due to the fact that the spin
at the origin is extending its influence on domains which grow with a lengthscale which is order√
t. This is typical of diffusion at interfaces. In other words, the magnetisation “diffuse” in the

system starting from the origin where we forced a spin to be up.
2.1.2. Global magnetisation. Let us now look at the global magnetization m = 1

N

∑
k mk.

From the master equation (3.17), it is immediate to obtain (it is enough to sum both sides over
i)

∂tm = −(1 − γ)m =⇒ m(t) = m(0) e−(1−γ)t

For β−1 > 0, γ < 1, so m(t) decays exponentially fast to zero. For β−1 = 0, γ = 1, so
m(t) = m(0), i.e., the global magnetization is conserved. For the initial condition mk(0) = δk,0,
and N large, m(0) = 0, hence m(∞) = 0. This shows that a one-dimensional system does not
spontaneously develop a global magnetization, so there is no phase transition to ferromagnetic
order.

2.1.3. Correlation functions. To explore the system’s behaviour further, we can look at
the time behaviour of correlation functions, in particular, the equal-time correlator Cij(t) :=
E[σi(t)σj(t)]. To write an equation for its evolution, we note that

(3.18) σi(t+ d t)σj(t+ d t) =

{
−σi(t)σj(t) with prob (Wi(σ) +Wj(σ)) d t,
σi(t)σj(t) with prob 1 − (Wi(σ) +Wj(σ)) d t.

Here we used the fact that the probability that only one spin of the pair (i, j) flips in the interval
[t, t+d t] is Wi(σ) d t(1−Wj(σ) d t)+Wj(σ) d t(1−Wi(σ) d t) ' (Wi(σ)+Wj(σ)) d t. It follows
that

∂tCij(t) = −2E[σiσj(Wi(σ) +Wj(σ))]
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Substituting Wi(σ) = 1
2

(
1 − γσi

σi+1+σi−1
2

)
(3.19) ∂tCij = −2Cij + γE

[
σi

σj−1 + σj+1

2
+ σj

σi−1 + σi+1

2

]
.

Let us assume now, as initial condition, spins are initialised randomly, so that Cij(0) = δij for
all pair i and j. Since the interactions are the same for any pair of spins, the system is expected
to keep this homogeneity property, i.e., the correlation function is expected to depend on the
distance between the spins, and not on their individual position, at all times, i.e., Cij(t) ≡ Ck(t)
with k = |i− j|. Rewriting the equation above for Ck we get

∂tCk = −2Ck + γCk+1 + γCk−1.

This is nothing but (again) the equation for random walker, in the presence of the boundary
condition C0(t) = 1 ∀ t: the equation can be solved by applying the method of images. Here,
however, we limit to look at equilibrium, when the time derivative is zero. Substituting the
ansatz limt→+∞ Ck(t) = ηk in the equation and requiring that the RHS vanishes, we get

2 = γ

(
η + 1

η

)
=⇒ η = 1 ±

√
1 − γ2

γ
,

where the minus sign has to be selected for the solution to be physical as 0 ≤ Ck ≤ 1. Some
algebraic steps

η =
1 − 1

cosh(2βJ)

tanh(2βJ)
= cosh(2βJ) − 1

sinh(2βJ)
= 2 sinh2(βJ)

2 sinh(βJ) cosh(βJ)
= tanh(βJ) ≡ γ

yield to
Ceq

k := lim
t→+∞

Ck(t) = tanhk(βJ) = e− k
ξ , ξ := − 1

ln γ
.

In other words, at equilibrium Ceq
k = 0 for k � ξ, while Ceq

k ' 1 for k � ξ, hence ξ plays the
role of a correlation length: spins at distances smaller than ξ are correlated while spins at larger
distances than ξ are uncorrelated. In the limit β−1 → 0, we have ξ → ∞, hence one has a single
domain of ferromagnetic order: Ceq

k = 1, meaning that all spins are aligned.
2.1.4. Domain walls. To conclude, let us now look at the density ρ of domain walls, i.e.,

interfaces between neighbouring spins with opposite orientations, at equilibrium:

ρ = 1
N

∑
k

E
[

1 − σkσk+1

2

]
= 1 − Ceq

1
2

We know that at zero temperature Ceq
k = 1, so ρ = 0; instead, for finite temperature, Ceq

1 = γ,
so ρ = 1−γ

2 . In order to better understand the system’s behaviour at zero temperature, we note
that the dynamics can be mapped onto a process of particle diffusion and annihilation. At zero
temperature (i.e., γ = 1) domain walls behave as particles diffusing and annihilating when they
meet. This is understood by computing the rate Wi(σ) for the following processes:

Annihilation → rate 1

Move right → rate 1/2

Move left → rate 1/2

Creation → rate 0

In the picture, the upper line represents the spin configuration (e.g., black is a +1 spin, white
is a −1 spin) and the lower line represents the domain wall configuration (so a square is ’on’
in between two spins of opposite sign). In particular, the last rule tells us that domains of
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aligned spins cannot break up. In the long time limit, all the particles will have annihilated, so
no domain wall will survive, and a single domain of ferromagnetic order will be found. How is
this consistent with the finding limt→+∞ m(t) = 0? It must be noted that m is an average over
all trajectories (ensemble average). The system does reach consensus in every single trajectory
at zero temperature, i.e., the instantaneous magnetization m(σ) = N−1∑

i σi does converges
to ±1. However, half of the trajectories will converge to m = 1 and half to m = −1, so
that the distribution of the thermodynamic magnetization at the end of the process will be
P (m) = 1

2δm,1 + 1
2δm,−1.

In the above analysis we had assumed the system initialised in a state with m(0) = 0, so
m(∞) = 0 follows from conservation of the magnetization at zero temperature. If the system
is initialised in a different initial condition, with, say, K spins up and N − K spins down, one
would have

m(0) = K − (N −K)
N

= 2K
N

− 1.

Since the thermodynamic magnetization, at the end of the process, has to match the initial
one, its distribution would have to be P (m) = pδm,1 + (1 − p)δm,−1 with limt→+∞ m(∞) =
2p − 1 ≡ 2 K

N − 1 ⇒ p = K
N , i.e., consensus is always achieved and the initial number of up-

spins determines the likelihood of the consensus state with all spins up. As a final remark,
we note that in this system the magnetization exhibits large fluctuations about the average
behaviour m = E[m(σ)]. This is typical of low-dimensional systems. Conversely, for large-
dimensional systems, macroscopic observables fluctuate little about their average and the mean-
field approximation becomes exact.
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σ9
2.2. The Curie–Weiss model. The Curie–Weiss model is the infi-

nite range version of the Ising model. In this case, every spin interact with
all the others and

hi(σ) = J

N

∑
j 6=i

σj .

 Since interactions are symmetric the equilibrium distribution is of Boltzmann-type with Hamil-
tonian

H(σ) = −J

2
∑
i6=j

σiσj = −NJ

2

(
1
N

N∑
i=1

σi

)2

+ J

2 .

One can write the local field as the sum of its average value plus fluctuations about the
average

hi(σ) = E[hi(σ)] + δhi(σ) = Jm− E[σi]
N

+ δhi(σ),

with E[δhi(σ)] = 0 and m(t) = 1
N

∑
i E[σi(t)], for large N one has hi(σ) ' Jm + δhi(σ).

Away from phase transitions, where correlations become important, spins fluctuate independently
about their average value, so δhi(σ) is expected to be small, being a sum of many independent
zero-average variables. Expanding Eq. (3.14) for small ∆i we have

∂tE[σi] = −E[σi] + E[tanh β[Jm+ δhi(σ)]]
= −E[σi] + tanh βJm+ β(1 − tanh2 βJm)E[δhi(σ)] + . . .

' −E[σi] + tanh βJm
(3.20)

The global magnetization is then found to evolve according to
(3.21) ∂tm = −m+ tanh Jβm ≡ f(m)
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Figure 1. Plot f(m) = −m + tanh(βJm), with J = 1, for different values of
βJ (in the right plot, darker color corresponds to higher value of βJ).

as expected from Eq. (3.14) within a mean-field approximation E[tanh βhi] ' tanh βE[hi] ≡
tanh Jβm. The steady state is found then imposing

m = tanh βJm

Multiplying this by m, using that tanh is an odd function, and | tanh x| ≤ |x|, one has

m2 = |m|| tanh βJm| ≤ βJ |m|2

showing that for βJ < 1 the only solution is m = 0. This can also be seen from the plot of f(m)
shown in Figure 1. One can see that for βJ ≤ 1, the function f(m) has only one zero in m = 0,
so this is the only (stable) steady state of the system, while for βJ > 1, there are two additional
zeros. We show below that the latter two solutions are stable, while the solution in zero becomes
unstable for βJ > 1.

This result also indicates the presence of a phase transition at βJ = 1, where the steady
state of the system meq changes from meq = 0, for βJ ≤ 1, to meq = ±mT for βJ > 1, mT > 0,
±mT being the new nonzero solution of the equation f(m) = 0. The solutions mT depend on
the temperature T = β−1. To see this, one can solve the equation f(m) = 0 graphically, as in
Fig. 1. For T → 0, i.e., for β → +∞, tanh(βJm) → sign(m), i.e., mT → 1.

Assuming that for N → 0, 1
N

∑
i σi → m, the Hamiltonian of the system is an even function

of m that can be written as H = − JN
2 m2 + J

2 . The emergence of two stable solutions, ±mT , in
a system described by a even Hamiltonian, is referred to as ‘spontaneous symmetry breaking’.
This refers to the fact that, although the Hamiltonian is symmetric under m → −m, the system
will select dynamically one of the two solutions, either mT or −mT , depending on the initial
condition. In particular, for m(0) = 0+ the system will converge to mT , for m(0) = 0−, the
system will converge to −mT . Hence, in contrast to the one-dimensional model, the evolution
(3.21) does not conserve the magnetitzation of the system. A magnetization will spontaneously
emerge in the system below the critical temperature T = J .

2.2.1. Linear stability analysis. We have seen that for T > J , meq = 0 is the only solution.
To study the stability of this solution, we can linearise the dynamics about meq = 0. Calling
β̂ = βJ for brevity, if β̂ < 1

dm
d t

' m(β̂ − 1) =⇒ m(t) = m(0) e− t
τr with τr = 1

1 − β̂
> 0
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shows an exponential approach of the system to m = 0. For β̂ → 1−, the exponential rate
diverges τ → ∞, showing critical slowing down. For β̂ > 1, τ < 0, so m ∝ e

t
|τ| , showing that

m = 0 is unstable in this regime and the magnetisation grows.
We have shown before that, for T < J , two new solutions meq = ±mT appear. Linearising

about mT , by setting m = mT + ϵ, for ϵ small, we have
d ϵ
d t

= tanh(β̂(mT + ϵ)) −mT − ϵ

' tanh(β̂mT ) + β̂ϵ[1 − tanh2(β̂mT )] −mT − ϵ

= ϵ[β̂(1 −m2
T ) − 1] =⇒

ϵ(t) = ϵ(0) e− t
τ , τr := 1

1 − β̂(1 −m2
T )
.

(3.22)

The quantity τr is positive. To show this, we differentiate the steady state condition with respect
to β

(3.23) ∂βmT = ∂β tanh βJmT = J(1 − tanh2 βJm) (mT + β∂βmT )
≡ J(1 −m2

T ) (mT + β∂βmT )
which can be rearranged as

1
mT

∂mT

∂β
(1 − β̂(1 −m2

T ))︸ ︷︷ ︸
τ−1

r

= J(1 −m2
T ) ≥ 0

The first factor is positive as mT is an increasing function of T . This implies that the term in the
round bracket on the LHS is positive as well, hence τ ≥ 0. It follows that the system approaches
mT exponentially fast.

We are left with the question of what happens at T = J , i.e., β̂ = 1, where mT → 0 and
all our formulas fail. Setting β̂ = 1 in the equation for the magnetisation, and expanding about
m ' 0,

dm
d t

= tanhm−m ' −m3

3
=⇒ m =

√
3
2

1√
t+ 3

2m2(0)

∼
√

3
2t
,

which is a slow, power law decay towards m = 0.

 In conclusion, we have three distinct behaviours in the Curie–Weiss model
T > J : an exponential relaxation to m = 0 occurs;
T = J : the system relaxes as t−1/2 to m = 0;
T < J : the system relaxes to one of the equilibrium ordered states, exponentially fast.
The order parameter m changes continuously from m = 0 (at T > J) to m 6= 0 (at T < J), hence we
are in the presence of a second order phase transition.

 The Ising model was originally introduced to explain ferromagnetic behaviour in magnetic systems,
and it has soon become a paradigmatic model to understand phase transitions. These are classical
subjects of statistical physics, which is concerned with the emergence of collective behaviour in large
systems of simple units, which interact locally. For example, in lattice models, each atom interacts
with only a few others (their neighbours in the crystalline structure), yet the system may exhibit long-
range order, giving raise to non-trivial properties, like magnetism. As we saw, in the Ising model,
neighbouring atoms i and j are assumed to interact via a coupling Jij > 0 which favours alignment of
their magnetic momenta.On the other hand, the temperature T tends to randomize their orientation,
thus acting as an opposing force.



64 3. DYNAMICS OF SPIN SYSTEMS

Ising solved the one-dimensional version of this model that we discussed above in 1925. As we
saw, the one dimensional model does not not exhibit ferromagnetic behaviour: it was later understood
that ferromagnetic transitions occur only for dimensionality above or equal to two. The solution to
the two-dimensional model, due to Lars Onsager (1968 Chemistry Nobel Prize) appeared in 1944,
and confirmed the emergence of a spontaneous magnetization for temperatures below a critical value.
Since then, many numerical studies have been carried out at dimensionalities larger than two, however,
an analytical solution of the three-dimensional model is still an open problem. Luckily, if we increase
the dimensionality further to d ≥ 4, the so-called mean-field approximation becomes exact, meaning
that it gives the right critical temperature and exponents.

Not all systems have Jij ≥ 0 for all pairs i, j. In fact, most of systems are ‘disordered’, meaning
that they have both positive and negative interactions (favouring alignment and opposite orientations,
respectively). To understand the implications of this, consider the following setting:

σ1

σ2

σ3

Assume that J12 > 0, J23 > 0 but J13 < 0. In this case, σ3 receives contrasting signal from spins σ1
and σ2 and, whatever configuration it takes, there will always be a link which will be ‘frustrated’. It is
easy to imagine how large loops involving positive and negative interactions in random order can make
nontrivial the study of the ‘optimal arrangement’ of a spin systems, and induce many sub-optimal
configurations, which frustrate some links (these normally correspond to local minima of an energy
function H(σ)). This situation occurs often in real systems, where units may receive conflicting pieces
of information, via different feedback loops. Neural circuits and neural networks tend to be of this
type. The relevance of this kind of systems is behind the motivation for the assignment of the 2022
Physics Nobel Prize to Giorgio Parisi, who in 1979 solved the disordered version of the Curie–Weiss
model, known as Sherrington–Kirkpatrick model.

3. Hebbian interactions

In the Curie–Weiss model, where all the interactions are the same, we could describe the
system’s behaviour in terms of a single order parameter, the global magnetization m. When the
interactions are non-homogeneous, things are more complicated, however, for special structures
of the interactions Jij it may still be possible to obtain a coarse-grained description of the system
in terms of a few observables, in closed form. This is the case for Hebbian interactions in neural
networks.

3.1. Hebb’s rule. We consider a neural network with N neurons, evolving according to
the dynamics in Eq. (3.4). We wish to store P patterns in the network. A pattern is a vector
ξµ = (ξµ

1 , . . . , ξ
µ
N ), µ = 1 . . . P , with N binary entries ξµ

i ∈ {−1, 1}. This pattern can represent,
for example, a black and white picture, in which ξµ

i = +1 means that the ith pixel is black,
ξi = −1 means that the pixel is white.

We may wonder now if it is possible to make a suitable choice of the interactions Jik, so that
we get the neural network to store and retrieve patterns like ξµ. Let us start from the simplest
case, i.e., let us assume that we want to store a single pattern ξ = (ξ1, . . . , ξN ), ξi = ±1. We
say that the system “retrieves” the pattern, if, when initialised in a configuration σ(0) = σ0, the
network converges, under dynamical evolution, to configuration ξ, i.e., limt→+∞ σ(t) = ξ. We
will show that this can be achieved imposing Hebbian interactions, i.e.,

(3.24) Jij = 1
N
ξiξj ∀i 6= j, Jii = 0.
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Since the interactions are symmetric, we know from previous sections that a Glauber dynamics
will converge to a Boltzmann equilibrium distribution described by the Hamiltonian

H(σ) = − 1
2N

∑
i6=j

ξiξjσiσj −
∑

i

θiσi.

For θk = 0, we can map the neural network to a ferromagnet with J = 1 by defining new ‘spin’
variables τi = ξiσi, so that

H(τ ) = − 1
2N

∑
i 6=j

τiτj .

This is a Curie–Weiss model and we know that a nonzero magnetisation m 6= 0 will develop in
the system for T < 1, where the “magnetization” is now defined as m = 1

N

∑
i τi ≡ 1

N

∑
i ξiσi =

1
N 〈ξ|σ〉. But this quantity is the scalar product between the vector ξ representing the stored
pattern and the system configuration. In other words, m 6= 0 means that our system will explore
configurations σ which are aligned or anti-aligned with the pattern ξ. The magnetisation m is
also called the overlap between the system configuration and the stored pattern and it quantifies
the system’s retrieval of the pattern itself. In particular, we have seen that at zero temperature
m = ±1, meaning that σ → ±ξ, where the ± sign will be selected from the initial condition. The
network will thus have two attractors, one in ξ and one in its opposite, and will converge to one
or the other depending on whether the initial configuration is sufficiently similar or dissimilar
to the stored pattern. The fixed point m = 0, instead, corresponds to all non-sensical initial
conditions (i.e. those which are neither similar nor dissimilar to the stored pattern) and is, as
we know, unstable for T < 1.

3.2. The Hopfield model. In 1982, John Hopfield introduced a model for the study of
associative neural networks that has soon played a central role in the field. Hopfield considered
the problem of storing P patterns {ξµ}P

µ=1, but he assumed them to be random, i.e., for each µ
and for each i, we randomly fix ξµ

i = 1 or ξµ
i = −1 with equal probability. He then considered a

neural network with the following interactions

(3.25) Jij = 1
N

P∑
µ=1

ξµ
i ξ

µ
j ∀i 6= j Jii = 0.

This formula generalises the Hebb’s rule above to the case of P patterns. To study this case, it
is convenient to define P overlaps

mµ(σ) = 1
N

P∑
i=1

σiξ
µ
i = 1

N
〈ξµ|σ〉, µ = 1, . . . , P,

each quantifying the retrieval of one pattern. Again, interactions are symmetric and the system
will converge to a Boltzmann distribution with Hamiltonian

H(σ) = − 1
2N

P∑
µ=1

∑
i 6=j

ξµ
i ξ

µ
j σiσj = −N

2

P∑
µ=1

m2
µ(σ) + P

2
.

Let us see how the system behaves in this case.
3.2.1. Noiseless dynamics and storage capacity. Let us start from the dynamics in Eq. (3.4)

in the noiseless regime, i.e.,

σi(t+ τ) = sign

 N∑
j=1

Jikσj(t)

 .
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For the given prescription of the interactions, let us show that the stored patterns are fixed
points of the above dynamics, i.e., if σ(t) = ξµ, then σ(t+ 1) = ξµ. Let us write this explicitly,
assuming σ(t) = ξµ:

(3.26) σi(t+1)=sign

 1
N

N∑
j=1

P∑
ν=1

ξν
i ξ

ν
j ξ

µ
j

=sign
(
ξµ

i + 1
N

N∑
j

P∑
ν 6=µ

ξν
i ξ

ν
j ξ

µ
j︸ ︷︷ ︸

zµ
i

)
=ξµ

i sign(1+ξµ
i z

µ
i ).

The quantity zµ
i is a crosstalk term, denoting pattern interference: if zµ

i is small, we will be able
to correctly retrieve the i-th entry of the pattern µ. This is not something that can happen for
any value of P and actually imposes some constraints on the number of patterns P that we can
safely store, i.e., on the storage capacity of the system. Using that ξµ

i z
µ
i is a normalised sum of

NP variables equal to ±1, with equal likelihood, it follows that ξµ
i z

µ
i is a Gaussian variable with

zero mean and variance P/N for NP � 1. To have σi(t) = ξµ
i we need to have 1 + ξµ

i z
µ
i > 0,

otherwise we make a mistake. The probability of making an error on the single spin is then

Perror = P[ξµ
i z

µ
i < −1] = 1√

2π(P/N)

∞∫
1

e− x2
2P/N dx = 1

2

[
1 − erf

(√
N

2P

)]
.

Setting a threshold p⋆ on the probability to perform an error-free recall of the pattern, we want

(1 − Perror)N > p⋆.

This condition gives an upper bound on the number of patterns we can store in the network. From
the considerations above, we can expect strong crosstalk (and thus a decrease in the retrieval
accuracy) for P = αN . This is often referred to as the saturated regime.

 Observe that, if ξµ is stable, −ξµ is also stable, and in general any odd mixture of stored pattern,
e.g. ξµ1 ± ξµ2 ± ξµ3 , will be stable as well. This last feature may be undesired, as it leads to mixing
memories, however, it can be shown that noise will help in destabilizing such mixtures.

3.2.2. Glauber dynamics. Let us now study the dynamics at finite temperature β of the
magnetisation m(t) in the Hopfield model. We start from the usual master equation for the
expectation of σi(t),

(3.27) ∂tE[σi(t)] = −E[σi(t)] + E[tanh βhi(σ(t))].

We will aim to express the dynamics in coarse-grained form, in terms of the overlaps mµ(σ), i.e.,
we aim to get a closed set of equations for their thermodynamic values

mµ(t) = E[mµ(σ(t))] = 1
N

∑
i

ξµ
i E[σi(t)].

For large N , we can express the local field as

hi(σ) = 1
N

∑
j 6=i

Jijσj =
P∑

µ=1
ξµ

i

1
N

∑
j 6=i

ξµ
j σj

=
P∑

µ=1
ξµ

i

(
mµ(σ) − 1

N
ξµ

i σi

)
'

P∑
µ=1

ξµ
i mµ(σ).

(3.28)
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Multiplying (3.27) by ξµ
i , summing over i, and dividing by N we obtain

(3.29) ∂tmµ = −mµ + 1
N

N∑
i=1

ξµ
i E

[
tanh

(
β

P∑
ν=1

ξν
i mν(σ)

)]
.

We next do a mean-field approximation, i.e., we assume fluctuations about thermodynamic
averages small mν(σ) ' mν , allowing us to drop the average E[•]. Defining ξi = (ξ1

i , . . . , ξ
P
i ),

vector of the patterns in i, and m = (m1, . . . ,mP ), we get

∂tmµ = −mµ + 1
N

N∑
i=1

ξµ tanh

(
β

P∑
ν=1

ξν
i mν

)

= −mµ + 1
N

N∑
i=1

ξµ
i tanh (β〈ξi|m〉)

= −mµ + 1
N

N∑
i=1

∑
ξ

δξ,ξiξ
µ
i tanh (β〈ξ|m〉)

= −mµ +
∑
ξ

ρ(ξ)ξµ tanh (β〈ξ|m〉) ≡ −mµ + Eξ[ξµ tanh (β〈ξ|m〉)].

(3.30)

In the last step we have introduced

ρ(ξ) := 1
N

∑
i

δξ,ξi
= ρ(ξ).

distribution of patterns ξi, and used the notation Eξ[f(ξ)] :=
∑

ξ f(ξ)ρ(ξ). The final equation
can be written in vectorial form,

(3.31) ∂tm = −m+ Eξ[ξ tanh(β〈ξ|m〉)].

Here, the average over all sites for a specific realization of patterns has been replaced with the
average over the distribution of patterns at one particular site (as if there were many systems).
This is a simple consequence of the law of large numbers for 2P � N , however, it is a non-trivial
statement if P increases (it will generally apply only to so-called self-averaging quantities). The
steady solution will be found by imposing

(3.32) m = Eξ[ξ tanh(β〈ξ|m〉)].

For β < 1, the only solution is m = 0, as it can be shown using the fact that x tanh(αx) ≤ αx2

for α > 0:

(3.33) ‖m‖2 = Eξ [〈ξ|m〉 tanh(β〈ξ|m〉)] ≤ βEξ[〈ξ|m〉2] = β
∑
µν

mµmν Eξ[ξµξν ]︸ ︷︷ ︸
δµν

= βm2.

As β is lowered below 1 (i.e., the temperature is increased above 1), bifurcations away from zero
are expected.

 Expanding Eq. (3.32) for small mµ, and using
Eξ[ξνξµ] = δµν

Eξ[ξµξνξρξλ] = δµνδρλ + δµρδνλ + δµλδρν − 2δµνδνρδρλ

(3.34)
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we get

mµ = β

P∑
ν=1

Eξ[ξνξµ]mν − β3

3
∑
ν,ρ,λ

mνmρmλEξ[ξµξνξρξλ]

= βmµ − β3

3

[
3mµ

∑
ρ

m2
ρ − 2m3

µ

]
= βmµ(1 − β2‖m‖2) + 2β3

3 m3
µ

(3.35)

i.e., putting aside for a moment the solution mµ = 0,

(3.36) β − β3‖m‖2 + 2β3

3 m2
µ = 1 ⇒ m2

µ = 3
2

[(
1
β2 − 1

)
+ ‖m‖2

]
From this equation we see that all mµ take three possible values mµ ∈ {−m, 0,m}, so we can further
simplify the equation denoting by n the number of components of m which are not zero:

(3.37) m2=3
2

[(
1
β2 −1

)
+nm2

]
⇒m≡mn=

√
3

3n−2

(
1− 1

β2

)
β→+∞−−−−−→

√
3

3n−2 .

If we remember that mµ is the overlap with the configuration µ, this shows that the first states
to bifurcate away from zero at criticality, are symmetric mixtures of patterns, i.e., states in which
mµ 6= 0 for n patterns over P .

The stability of the steady states can be studied via linearising the equation of motion,
exactly as we did in the other cases, starting from Eq. (3.31) about a fixed point m⋆. One sets
m = m⋆ + ϵ and expands for small ϵ

(3.38) ∂tϵ = −Eξ

[
I − α(m⋆)|ξ〉〈ξ|

]
︸ ︷︷ ︸

A(m⋆)

ϵ, α(m⋆) := β − β tanh2(β〈ξ|m⋆〉).

This implies that ϵ(t) = e−A(m⋆)t ϵ(0). For T > 1, where m⋆ = 0, one has A(0) = (1 − β)I,
hence we have exponential approach to m⋆ = 0. For T < 1, it is possible to show that a
symmetric mixture of the type

m⋆ =
√

3(1 − T 2)
3n− 2

(1, 0, 1, 1, 0, . . . , 0),

with n nonzero components, is stable for n odd and T < T ⋆(n), with T ⋆(n) decreasing as n
increases. In particular, all mixtures with odd-n are stable at T = 0, however, only pure states
(i.e., states with n = 1) remain stable as T → 1−.



CHAPTER 4

The Fokker–Planck equation and the Langevin equation

Abstract. In the previous chapters, we have considered simple Markov processes for which
the master equation could be solved analytically. Most of the time, however, an analytical
solution is not available. However, in certain limits, one can carry out an expansion and
cast the master equation into a partial differential equation, known as the Fokker–Planck
equation. Popular expansion schemes are the Kramers–Moyal expansion and the Van Kampen
expansions, which we will discuss in this chapter.

1. The Kramers–Moyal expansion

In this chapter, we will consider the evolution of a continuous Markovian random process
Xt taking values in Ω ⊆ R. For this process, we cannot work with probabilities, due to the
cardinality of the set Ω, but we can introduce a density of probability p(x, t) such that P[Xt ∈
(x, x+dx)] = p(x, t) dx. Interestingly we can derive a general expression an equation for p(x, t),
called Fokker–Planck equation, via a Kramers-Moyal expansion of the master equation for a
continuous random variable Xt. Let us start precisely from the master equation, that takes the
form we have anticipated in Eq. (2.8)
(4.1)

∂tp(x, t) =
∫

[W (x|x′)p(x′, t) −W (x′|x)p(x, t)] dx′ with W (x′|x) = lim
τ→0

p1|1(x′, t+ τ |x, t)
τ

.

We introduce now a function w defined as w(η|x) := W (x+ η|x): in other words, w(η|x) is the
rate at which, starting from x the system is displaced by η. We can write the master equation
as

(4.2) ∂tp(x, t) =
∫

[w(η|x− η)p(x− η, t) − w(η|x)p(x, t)] d η,

Up to now, this is just a rewriting. Let us assume now that w(η|x) is smooth and decays very
fast in η, i.e., that large displacements are very unlikely. We can expand for small η, writing

(4.3) w(η|x− η)p(x− η, t) =
∞∑

k=0

(−η)k

k!
∂k

x [w(η|x)p(x, t)]

so that,

(4.4) w(η|x− η)p(x− η, t) − w(η|x)p(x, t) =
∞∑

k=1

(−η)k

k!
∂k

x [w(η|x)p(x, t)].

Substituting in the master equation, we obtain the Kramers–Moyal expansion

(4.5) ∂tp(x, t) =
∞∑

k=1

1
k!
∂k

x

[(∫
(−η)kw(η|x) d η

)
p(x, t)

]
≡

∞∑
k=1

1
k!
∂k

x

[
a(k)(x)p(x, t)

]
.

69
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where we defined the jump moments

(4.6) a(k)(x) :=
∫
ηkw(η|x) d η.

If the terms for k > 2 are negligible, we can truncate the expansion to the second order, obtaining
the general form of the Fokker–Planck equation

(4.7) ∂tp(x, t) = −∂x

[
a(1)(x)p(x, t)

]
+ 1

2
∂2

x

[
a(2)(x)p(x, t)

]
.

The coefficients a(1)(x) and a(2)(x) are called the drift and diffusion coefficient, respectively. The
drift and diffusion coefficients can be calculated recalling the definition of rates:

a(k)(x) = lim
τ→0

1
τ

∫
d η ηkp1|1(x+ η, t+ τ |x, t)

= lim
τ→0

1
τ

∫
dx′ (x′ − x)kp1|1(x′, t+ τ |x, t)

= lim
τ→0

E[(Xt+τ − Xt)k|Xt = x]
τ

.

(4.8)

Hence, calculation of a(1) and a(2) only needs the knowledge of E[Xt+τ −Xt|Xt = x] and E[(Xt+τ −
Xt)2|Xt = x] to linear order in τ . As the master equation, the Fokker–Planck equation can be
solved analytically for a few special cases; however, it has two alluring features when compared
with the master equation:

(1) it is a partial differential equation rather than a integro-differential equation (so it is
easier to solve numerically);

(2) it does not require the knowledge of the entire kernel W (x|x′), but only of two functions
a(1)(x) and a(2)(x).

When the step size in the master equation cannot be made arbitrarily small (for example, in the
study of chemical reactions, or in population dynamics) the Kramers–Moyal expansion may not
give a good approximation. The truncation to k = 2 in the Kramers–Moyal expansion may seem
rather arbitrary. In this case, a different expansion can be carried out when the system has a
large parameter (volume, number of particles, etc.): this expansion, due to Van Kampen, will
be presented below.

1.1. The stationary solution. Any Fokker–Planck equation has the general form of a
continuity equation, i.e., ∂tp(x, t) = −∂xJ(x, t). The Fokker–Planck equation states that the
probability density is conserved:
(4.9) ∂tp(x, t) + ∂xJ(x, t) = 0,

where J(x, t) is

(4.10) J(x, t) := a(1)(x)p(x, t) − 1
2
∂x[a(2)(x)p(x, t)].

At stationarity, p(x, t) ≡ π(x), hence ∂xJ(x) = 0, giving J(x) = a(1)(x)π(x)− 1
2∂x[a(2)(x)π(x)] =

constant. If there is no flux of probability at the boundary, or detailed balance is satisfied, then
at stationarity J(x) = 0 ∀ x. and therefore

(4.11) a(1)(x)π(x) = 1
2
∂x[a(2)(x)π(x)] ⇒ π(x) = 1

Za(2)(x)
exp

[∫
2a(1)(y)
a(2)(y)

d y
]
,

where Z is a proper normalisation. Note that, for unbounded systems, i.e., systems evolving on
R, normalization of the probability distribution implies limx→±∞ π(x) = limx→±∞ ∂xp(x, t) = 0,
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so limx→±∞ J(x, t) = 0, meaning that, at stationarity, J must vanish everywhere. For bounded
systems, confined in a finite interval Ω = [a, b], one can have different boundary conditions:

(1) reflecting barrier, J(a, t) = J(b, t) = 0 (current through barriers is zero);
(2) absorbing barrier p(a, t) = p(b, t) = 0 ∀ t;
(3) periodic boundary conditions, p(a, t) = p(b, t) ∀ t.

For systems with reflecting boundary conditions, since the probability current vanishes at the
boundaries, it will vanish everywhere at stationarity, as for unbounded systems. For these
systems, the steady-state solution is thus given by (4.11).

In the special case in which a(2)(x) = 2D is a constant and a(1)(x) = −∂xV (x), the steady-
state solution in Eq. (4.11) takes the form

(4.12) π(x) = 1
Z

e− V (x)
D ,

which is a typical Boltzmann form. If V (x) is the external potential, then this can be identified
with a Boltzmann distribution with temperature kBT = D. This result already suggests a
relevant fact: the temperature T enters in the diffusion constant, i.e., is related, in the Einstein’s
picture of the Brownian motion, to the motility of the molecules surrounding Brown’s pollen
grains, as we will see below.

1.2. Equation for the moments. Similarly to the master equation, the Fokker–Planck
equation can be used to get equations for averages and fluctuations. By multiplying the Fokker–
Planck equation by x and integrating over x, we obtain

(4.13) ∂t

∫
xp(x, t) dx = −

∫
x∂x[a(1)(x)p(x, t)] dx+ 1

2

∫
x∂2

x[a(2)p(x, t)] dx.

Using integration by parts and assuming p and its derivatives to be zero at the boundaries, this
can be written as

(4.14) ∂tE[Xt] = E[a(1)(Xt)].

Similarly, by multiplying by x2 and repeating the same steps, we have

∂tE[X2
t ] = 2E[a(1)(Xt)Xt] + E[a(2)(Xt)].

 The above derivation can be generalised to multi-component processes, Xt = (Xµ
t )N

µ=1, obtaining

(4.15) ∂tp(x, t) = −
∑

i

∂µ[a(1)
µ (x)p(x, t)] + 1

2
∑
µν

∂2
µν [a(2)

ij p(x, t)]

where ∂µ ≡ ∂
∂xµ and

(4.16) a(k)
µ1,...,µk

(x) = lim
τ→0

E
[∏k

j=1(Xµj

t+τ − X
µj

t )
∣∣∣Xt = x

]
τ

1.3. The drift term. The presence of a(1) is a conquence of the presence of a drift and
the term a(1)(x) determines a deterministic evolution. To justify this statement, suppose that
a(2)(x) ≡ 0, so we can focus on the effect of a(1)(x) only. The resulting equation is the Liouville
equation

∂xp(x, t) = −∂x[a(1)(x)p(x, t)].
This equation admits a solution of the type p(x, t) = δ(x − u(t)), i.e., a solution in which
Xt = u(t) deterministically with a given initial condition X0 = u(0): the system follows a very
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precise trajectory with no randomness. To obtain the expression of u, let us plug this ansatz in
the equation, multiply by x and integrate:

(4.17) ∂t

∫
xδ(x− u(t)) dx = −

∫
x∂x[a(1)(x)δ(x− u(t))] dx ⇔ ∂tu = a(1)(u).

This is the equation for the trajectory u: it is the solution of the equation u̇ = a(1)(u), which is
a deterministic equation for some given initial condition u(0).

2. The Brownian motion

In 1827, the botanist Robert Brown observed, when suspended in water, small pollen grains
are subject to an erratic and irregular motion, that, since then, took on the name of Brownian
motion. The origin of this phenomenon was debated for many years, and the first convincing
theory for it was given by Albert Einstein in 1905. Einstein’s theory was refined in the very
subsequent years in papers by Marian Smoluchowski (1906) and Paul Langevin (1908). By
the 1950s it became clear that Brownian motion constituted a paradigm theory for many-body
systems in classical mechanics and the theory developed for it could be applied to many different
observables in macroscopic systems.

Einstein assumed that Brownian motion is caused by the frequent impacts by molecules of the
liquid in which the pollen is suspended. The motion of these molecules is so complicated that its
effect on the pollen grain can only be described probabilistically in terms of frequent statistically
independent impacts, and the position Xt of the pollen is a stochastic process. Einstein made
the following assumptions:

• each individual particle executes a motion that is independent of the motion of all other
particles;

• the movements of the same particle in different time intervals [t, t+ d t] and [t+ τ, t+
τ + d t] are independent processes, as long as τ is not too small.

From the practical point of view, Einstein assumed that the dynamics is the one of a Markov
chain in continuous space, with evolution taking place at times t = 0, τ, 2τ, · · · , with τ small, but
nevertheless large enough to guarantee the mentioned independence of the dynamical evolution.
He then took the τ → 0 limit, exactly as we did to obtain the equations describing continuous-
time random walks. We will look, for simplicity, to the motion in one dimension. Let Xt be the
position of the particle at time t, and let us suppose that the particle as a drift velocity v. Then
(4.18) Xt+τ = Xt + vτ + ητ .

The important object here is ητ . It is regarded as a random variable, incorporating the effect of
the collisions of the molecules on our Brownian particle. It is a random displacement induced
by the environment. We expect it to have zero average E[ηt] = 0 (there is no preferred direction
in the “kinks”) and even distribution, P[ηt > 0] = P[ηt < 0]. Finally, its distribution does not
depend on t (the effect of the environment is stationary), just on τ (for how long we observe the
particle displacing). We will need only another element in our calculation. We call the variance
of ητ In other words,
(4.19) E[η2

τ ] =: a2
τ > 0.

We can now compute the coefficient to plug in our Fokker–Planck equation. In particular

(4.20) a(1)(x) = lim
τ→0

E[Xt+τ − Xt|Xt = x]
τ

= v.

Also we call

(4.21) a(2)(x) = lim
τ→0

E[(Xt+τ − Xt)2|Xt = x]
τ

= lim
τ→0

E[η2
t ]

τ
≡ 2D.
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The limit D is called diffusion constant and we finally have our equation

(4.22) ∂tp(x, t) = −v∂xp(x, t) +D∂2
xp(x, t).

If v = 0, this equation is simply called diffusion equation and the process Xt is called Wiener
process. The diffusion equation is also called heat equation, and it is ubiquitous in science. It
had been originally derived to describe how the distribution of temperature evolves over time in
a solid medium, as heat spontaneously flows from places where it is higher towards places where
it is lower (since D > 0, p(x, t) is an increasing function of time when it is convex and decreasing
when it is concave).

2.0.1. Solution by Fourier transform. The diffusion equation can be solved using the Fourier
transform, for example assuming initial condition p(x, 0) = δ(x) (the initial position of the parti-
cle is in the origin, X0 = 0). Using the definition of Fourier transform p̂(q, t) =

∫∞
−∞ p(x, t) eiqx dx,

we write the diffusion equation in Fourier space
∂p̂(q, t)
∂t

= −Dq2p̂(q, t) ⇒ p̂(q, t) = p̂(q, 0) e−Dtq2
= e−Dtq2

.

Taking the inverse Fourier transform leads to the result

p(x, t) =
∞∫

−∞

d q
2π
p̂(q, t) e−iqx = 1√

4πDt
e− x2

4Dt .

By using this Gaussian distribution, we obtain the moments of the process

E[Xt] = 0, E[X2
t ] = 2Dt.

The scaling for the average displacement Xt ∼
√
t is one of the central results in statistical physics.

For a generic initial condition p(x, 0), one has, simply

p(x, t) =
∫

dx
∫

d q p(x′, 0) e−iq(x−x′)−Dq2t =
∫
p(x′, 0) e− (x−x′)2

4Dt dx′,

so that the Gaussian is the propagator of the process.
If v 6= 0, one can solve Eq. (4.22) using the Fourier transform, as for the v = 0 case.

Alternatively, one can first eliminate the drift term via Galilean invariance, i.e., searching for a
solution in the form p(x, t) = g(x− vt, t). Plugging this form into the equation, one gets

(4.23) ∂tg − v∂xg = −v∂xg +D∂2
xg ⇔ ∂tg = D∂2

xg

which brings the Fokker–Planck equation into the form we have already solved. For p(x, 0) =
g(x, 0) = δ(x), the solution is again in Gaussian form, so that

p(x, t) = g(x− vt, t) = 1√
4πDt

e− (x−vt)2
4Dt .

This is now a ‘travelling’ Gaussian, where the average E[Xt] = vt moves at constant speed, due
to the presence of the drift v.

 Example A basic explanation of why it is harder to breathe, as one climbs mountains, relies
specifically on the Fokker–Planck equation derived above. Oxygen molecules can be assimilated to
Brownian particles that diffuse in the atmosphere and are subject to a constant force F = −mg,
where g is the earth-surface gravity acceleration. Denoting Xt the position of an oxygen molecule
above the earth’s surface, we have

∂tp(x, t) = −mg

γ
∂xp(x, t) +D∂2

xp(x, t) ≡ −∂xJ(x, t),
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where we have assumed that there is a viscosity γ such that −γv = mg, and

J(x, t) := −mg

γ
p(x, t) +D∂xp(x, t).

At stationarity, J(x, t) ≡ J(x) and ∂xJ(x) = 0 (because of the Fokker–Planck equation). Since there
is no probability current at the boundaries, i.e. J(0) = J(∞) = 0, one has J(x) = 0 ∀ x. The
stationary solution π(x) thus follows therefore from

(4.24) J(x) = 0 ⇒ mg

γ
π(x) = −D∂xπ(x) ⇒ π(x) = 1

Z
e− mgx

Dγ .

Despite the crude approximation, we have recovered the form of the basic barometric equation, which
is used to model the change of air pressure P with altitude

P (x) = P (0) e− Mgx
RT

where M is the molar weight of dry air, T is the temperature and R the ideal gas constant. From
recognising the Boltzmann form π(x) = 1

Z
e−βH(x) of (4.24), we identifyH(x) = mgx, so that β ≡ 1

Dγ
.

This equivalence tells that, in equilibrium, the fluctuation term D is related to the dissipation term
γ via the equilibrium temperature

D = T

γ
,

which is a basic form of the fluctuation-dissipation theorem.

 The diffusion equation obtained by Einstein can be obtained in a slightly different way. Suppose
that a random walker is moving along a 1-dimensional lattice, with lattice spacing a. When the
random walker is located in the site k, its position will be ak. The walker jumps at discrete times
t = nτ , n = 0, 1, 2 . . ., with the following transition probabilities

Qk±1 k(τ) = P1|1[Xt+τ = (k ± 1)a|Xt = ka] = 1
2 ± ϵ, ϵ ∈ [0, 1/2].

We also take all other transition probabilities equal to zero. This is a discrete-time Markov process
of the type we have studied in the first chapter (but on an infinite set). The idea is to take a → 0
and τ → 0 so that we can obtain a process that is in the continuum and in continuous time. If, as in
the first chapter, Pk(t) ≡ P[Xt = ka], using the Markov property we can write

Pk(t+ τ) =
∑

k′

Qk k′ (τ)Pk′

=
(1

2 − ϵ
)
Pk−1(t) +

(1
2 + ϵ

)
Pk+1(t).

(4.25)

Let us define now
(4.26) Pk(t) =: ap(x, t), x = ka.

The quantity p(x, t) is a density of probability: instead of assigning probability Pk(t) to the site k,
we can imagine that we assign a density p(x, t) to the interval (x − a/2, x + a/2) with x = ka. The
equation then read

(4.27) p(x, t+ τ) =
(1

2 − ϵ
)
p(x− a, t) +

(1
2 + ϵ

)
p(x+ a, t).

As we did in deriving the master equation, we can subtract on both sides p(x, t),

(4.28) p(x, t+ τ) − p(x, t) =
(1

2 − ϵ
)[

p(x− a, t) − p(x, t)
]

+
(1

2 + ϵ
)[

p(x+ a, t) − p(x, t)
]
.

Taylor expanding for small a and τ , the equation becomes

(4.29) ∂tp(x, t) = 2aϵ
τ
∂xp(x, t) + a2

2τ ∂
2
xp(x, t).
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Taking the limits τ → 0 and a → 0 in such a way that

D := a2

2τ , v := −2aϵ
τ
,

we recover Eq. (4.22). In particular, if ϵ = 0 (i.e., the probability of going left or right are the same),
v = 0 and we have exactly the diffusion equation obtained by Einstein.

2.1. A related process: the Ornstein–Uhlenbeck process. An important linear pro-
cess, for which we are able to calculate the time-dependent solution of the Fokker–Planck equation
explicitly, is the Ornstein–Uhlenbeck process. The Fokker–Planck equation associated with this
problem has

(4.30) a(1)(x) = −γx a(2)(x) = 2D, γ,D > 0.

so that it takes the form
∂tp(x, t) = γ∂x[xp(x, t)] +D∂2

xp(x, t).
Originally used to model the velocity of a massive Brownian particle experiencing friction, this
process describes a random walk with a tendency to move back towards the average value and it is
widely used in financial mathematics to model interest rates, exchange rates etc. In this context,
D represents the volatility caused by shocks and γ the rate at which shocks are dissipated. The
stationary solution

(4.31) π(x) =
√

γ

2πD
exp

(
−γx2

2D

)
retrieves the form of the Maxwell distribution for the velocity of the molecules of a perfect gas at
temperature T , ρ(v) =

√
m

4πkBT exp
(

− mv2

2kBT

)
given their mass m, upon identifying D/γ = kBT/m.

The time-dependent solution, for an initial condition p(x, 0) = δ(x − x0), is found by using
the Fourier transform p̂(k, t) of p(x, t). Multiplying the Fokker–Planck equation by e−ikx, and
integrating over x by parts (setting to zero the contributions from the boundaries) we have

∂tp̂(k, t) =
∫

e−ikx
[
γ∂x[xp(x, t)] +D∂2

xp(x, t)
]

dx

= −γk∂kp̂(k, t) −Dk2p̂(k, t).
(4.32)

This equation can be solved by using the method of characteristics. Finally, using the inverse
Fourier transform one obtains

p̂(x, t) =
√

γ

2πD(1 − e−2γt)
exp

[
−γ(x− x0 e−γt)2

2D(1 − e−2γt)

]
.

For γt � 1 this converges to the steady-state distribution (4.31).

3. Large size expansion

If the “step” of a stochastic process, let us call it Nt, in a master equation cannot be made
arbitrarily small (for example, the process under investigation Nt is the number of molecules at
some time, that, of course, can only take integer values in a population dynamics or chemical
reaction kinetics), one may still be able to carry out a Kramers–Moyal expansion for the concen-
tration Xt = 1

V Nt, where V is a large parameter, e.g., the volume of the system or the population
size. Starting from the master equation for a jump process

Ṗn = rn−1Pn−1 + ℓn+1Pn+1 − (ℓn + rn)Pn,
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we change variable from n to x. For n = xV , let us introduce

Pn(t) =: p(x, t) 1
V
.

From the definition, p(x, t) is a sort of density, corresponding to a portion 1/V of the volume.
Similarly, we write
(4.33) rn =: V r(x), ℓn =: V ℓ(x).
The master equation becomes

(4.34) ∂tp(x, t)
V

= r
(
x− 1/V

)
p
(
x− 1/V , t

)
+ ℓ
(
x+ 1/V

)
p
(
x+ 1/V , t

)
− (ℓ(x) + r(x))p(x, t).

For large V we can make a Taylor expansion obtaining

(4.35) ∂tp(x, t) = −∂x [(r(x) − ℓ(x))p(x, t)] + 1
2
∂2

x

[
r(x) + ℓ(x)

V
p(x, t)

]
,

which is a Fokker–Planck equation with

a(1)(x) = r(x) − ℓ(x) a(2)(x) = r(x) + ℓ(x)
V

.

As we know, the steady-state solution is given by

π(x) = 1
Z

V

ℓ(x) + r(x)
e−V ϕ(x), ϕ(x) := −2

x∫
0

r(y) − ℓ(y)
r(y) + ℓ(y)

d y.

For large V , the exponent of the steady-state distribution is dominated by the minimum x⋆ of
ϕ(x), and we can make a Laplace approximation

ϕ(x) = ϕ(x⋆) + 1
2
ϕ′′(x⋆)(x− x⋆)2

leading to a Gaussian approximation

π(x) =
√

V

2πσ2 e−V
(x−x⋆)2

2σ2 , σ2 := 1
ϕ′′(x⋆)

.

Note that the distribution is only normalizable for ϕ′′(x⋆) > 0, i.e., when x⋆ is a stable fixed
point of the noiseless dynamics. Hence, this approach accounts for fluctuations Θ(

√
V ) about

metastable states, but it does not capture large fluctuations, i.e., Θ(V ), which lead to rare events.

3.1. Van Kampen’s expansion. An alternative approach to the derivation above is due
to Van Kampen. This approach assumes that Nt has a time-dependent average, E[Nt] = V ρ(t),
and fluctuations about the average are Θ(

√
V ), so that we can decompose

Nt = V ρ(t) +
√
V Xt

with V volume and ρ density of the system. The goal is to obtain a set of equations for the
density and to describe the stochastic fluctuations Xt. To illustrate this approach, we focus on a
simple decay process

• → ∅
governed by the master equation with ℓn = 1 and rn = 0,
(4.36) Ṗn = (n+ 1)Pn+1 − nPn.

It is convenient to define the raising and lowering operators, such that
(4.37) Ef(n) = f(n+ 1), E−1f(n) = f(n− 1),
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and write the master equation in terms of these
(4.38) Ṗn = (E − 1)nPn.

Since ρ is deterministic, the statistics of Nt is governed by the statistics of Xt, and we introduce

(4.39) Pn(t) = 1√
V
p(x, t).

The function p(x, t) is a density of values the quantity Xt can assume. The effect of lower and
raising operators is deduced by noting that En = n+ 1 so,

(4.40) Ef(x) = Ef

(
n− V ρ√

V

)
= f

(
n+ 1 − V ρ√

V

)
= f

(
x+ 1√

V

)
=

∞∑
k=0

∂k
xf(x)
k!V k/2

,

hence we can say that

(4.41) E =
∞∑

k=0

1
k!V k/2

∂k
x = 1 + 1√

V
∂x + 1

2V
∂2

x + . . . .

This expression of E can help us to rewrite the RHS of the master equation. On the LHS, on
the other hand, we have to observe that, in an interval of time ∆t → 0, ∆n → 0 and

(4.42) ∆n = V∆ρ+
√
V∆x ∆t→0−−−−→ 0 = V d ρ+

√
V dx ⇒ dx

d t
= − ρ̇√

V
.

so, rewriting d
d t = ∂t + d x

d t ∂x we can write
√
V Ṗn(t) = ∂t

[
p
(
V −1/2n− V

1/2ρ, t
)]

= ∂tp(x, t) − ρ̇√
V
∂xp(x, t).

Substituting in the master equation the expressions we have obtained, we have

∂tp(x, t) − ρ̇√
V
∂xp(x, t) =

(
1√
V
∂x + 1

2V
∂2

x

)
(V ρ+

√
V x)p(x, t).

At order
√
V we have the equation for the average

ρ̇∂xp = −ρ∂xp ⇒ ρ̇ = −ρ ⇒ ρ(t) = ρ(0) e−t .

This result makes sense with what we expect: the process is a pure death process and therefore
the density decays exponentially. At order 1, we obtain an equation for the fluctuations part

∂tp = ∂x(xp) + ρ

2
∂2

xp

which is a Fokker–Planck–like equation. Observe that this approach suffers from the same
limitations as the Kramers–Moyal approach, although it makes the evolution of the system
clearer.

4. Spectral analysis of the Fokker–Planck equation [⋆]

We can write the Fokker–Planck equation (4.7) as

(4.43) ∂p(x, t)
∂t

= Wp(x, t)

with the differential linear operator

W = −∂x

[
a(1)(x)•

]
+ 1

2
∂2

x

[
a(2)(x)•

]
.

The formal solution of (4.43) is
(4.44) p(x, t) = etW(x) p(x, 0),
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where Q(x, t) := etW(x) is the so-called forward propagator. This is in complete analogy with what
what we discussed for the case of a master equation involving a matrix W . As the propagator
Q(t) satisfied the equation d Q(t)

d t = WQ(t) in the case of continuous-time processes in discrete
space, here Q(x, t) satisfies the equation
(4.45) ∂tQ(x, t) = W(x)Q(x, t).

 The operator W acts on the space L2(D) of functions f : D → C with D ⊆ R, such that the
integral of their modulus squared is finite,

(4.46) L2(D) :=
{
f : D → C

∣∣∣ ∫ |f(x)|2 dx < +∞
}
,

so that, if f ∈ L2,

(4.47) W(x)f(x) := −∂x

[
a(1)(x)f(x)

]
+ 1

2∂
2
x

[
a(2)(x)f(x)

]
.

The space L2 can be equipped with a inner product that we denote using the same notation adopted
for vectors

(4.48) 〈f |g〉 :=
∫
f⋆(x)r(x) dx, f, g ∈ L2(R),

where f⋆ is the complex conjugate of f . By means of this inner product we can define the adjoint
operator W† to W as the operator such that, for two functions f, g ∈ L2, has
(4.49) 〈W†f |g〉 = 〈f |Wg〉.
The operator W† can be find explicitely:

(4.50) 〈f |Wg〉 = −
∫
f⋆(x)∂x

[
a(1)(x)f(x)

]
dx+ 1

2

∫
f⋆(x)∂2

x

[
a(2)(x)f(x)

]
dx

=
∫
r(x)

[
a(1)(x)∂x + a(2)(x)

2 ∂2
x

]
f⋆(x) dx ≡ 〈W†f |g〉,

so that

(4.51) W
† = a(1)(x)∂x + a(2)(x)

2 ∂2
x.

In a sense, W† expresses the action of the operator W if “multiplied on the right”. We say that W is
Hermitian if W = W†. If this is the case, then W has a complete set of of eigenfunctions. This means
that there exists a set of functions ϕa(x) and ψa(x) such that

W(x)ψa(x) = µaψ
a(x) W

†(x)ϕa(x) = µ⋆
aϕ

a(x)
with a set of real eigenvalues µa, so that ψa = ϕa,

〈ψa|ψb〉 = δab,
∑

a

ψa⋆(x)ψa(x) = δ(x),

where δ(x) is the Dirac delta.

Suppose now that W has indeed a complete set of eigenfuntions. We can perform an eigen-
function decomposition of the Fokker–Planck equation, similar to what we did for the master
equation, expanding p(x, 0) ≡ p0(x) in the basis of eigenfunctions

p(x, 0) =
∑

a

〈ϕa|p0〉ψa(x)

and substituting in (4.44) we have

(4.52) p(x, t) =
∑

a

〈ϕa|p0〉 eµat ψa(x).
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However, W is generally non-Hermitian, so the existence of a complete set of orthonormal
eigenfunctions is not ensured and eigenvalues are not need to be real. If W is Hermitian, then
µa ∈ R: as in the case of master equations, the convergence to the stady-state solution depends
on the spectral properties of the operator W.

4.1. The case a(2)(x) ≡ 2D. We will prove now the convergence to the steady state in
the special case in which a(2) ≡ 2D, i.e.,
(4.53) W(x) = ∂x [V ′(x)•] +D∂2

x.

We have also written a(1)(x) = −∂xV (x), which is always possible in one dimension. We know
that in this case the steady-state solution (in the case of zero probability flow on the boundaries)
is the one in Eq. (4.12) In order to prove convergence to this steady-state let us first write the
density p(x, t) as

p(x, t) = q(x, t) e− 1
D V (x)

Inserting the form above in ∂tp = Wp, we get, after little algebra, an equation for q,

∂tq = 1
2
q∂2

xV − (∂xV )2

4D
q +D∂2

xq ≡ Ŵq

with
Ŵ := 1

2
∂2

xV − (∂xV )2

4D
+D∂2

x.

Exactly as we did for the general Fokker–Planck equation, the equation for q has a formal solution
given by

(4.54) q(x, t) = etŴ q(x, 0).

It is easy to verify that Ŵ is Hermitian, and therefore it will have a complete set of orthonormal
eigenfunctions ψ̂a, such that Ŵψ̂a = µ̂aψ̂

a, and µ̂a ∈ R. The crucial observation now is that
the operator Ŵ and the operator W have the same set of eigenvalues. Infact, if ψ̂a(x) is an
eigenfunction of Ŵ with eigenvalue µ̂a, then ψa(x) = ψ̂a(x) e− 1

D V (x) is an eigenfunction of W

with the same eigenvalue. This can be shown easily using the fact that

(4.55) W
[
f(x) e− 1

D V (x)
]

= e− 1
D V (x) Ŵf(x).

We can show something more: the operator Ŵ is such that

(4.56) Ŵ = −A†A

where A is the differential operator

A :=
√
D∂x + 1

2
√
D
∂xV.

This implies that µ̂a ≤ 0, as, for any eigenfunction ψ̂a,

(4.57) µ̂a = 〈ψ̂a|Ŵψ̂a〉 = −〈ψ̂a|A†Aψ̂a〉 = −〈Aψ̂a|Aψ̂a〉 ≤ 0.

Since W and Ŵ must have the same eigenvalues, this means that the eigenvalues of W are
also non-positive, and we know that W has an eigenvalue µ̂0 = 0 (with associated eigenfunction
π(x)). By consequence, assuming that there is a unique eigenvalue equal to zero, by Eq. (4.52)
the only surviving term is indeed the one corresponding to µ0 = 0, i.e., limt→0 p(x, t) = π(x).

 Verify (4.56).
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 Example Let us apply this very general framework to the simplest case, i.e., the heat equation
∂tp(x, t) = D∂2

xp(x, t),
with reflecting and absorbing boundary conditions in 0 and L, so that the domain is D = [0, L]. The
operator W is very simple,
(4.58) W = D∂2

x

so that formally p(x, t) = et∂2
x p(x, 0). The operator W is also Hermitian, W† = W, so that it will

have a complete basis of eigenfuctions with real eigenvalues.
For absorbing conditions, we have the constraint p(0, t) = p(L, t) = 0 to be satisfied ∀ t. The

eigenfunctions are found by solving
Wψa(x) = D∂2

xψ
a(x) = µaψ

a(x),
but we have to take into account the constraint ψa(0) = ψa(L) = 0. This equation is solved by

(4.59) ψa(x) = ca sin (ωax) + c′
a cos (ωax) , µa = −ω2

a

D
.

but we have indeed to impose ψa(0) = ψa(L) = 0, that implies c′
a = 0 and ωa = πa

L
for a ∈ N. Also,

to have 〈ψa|ψa〉 = 1 we have ca ≡ 1√
L

. In conclusion

(4.60) ψa(x) =
√

2
L

sin
(
πax

L

)
, µa = −π2a2

DL
, a ∈ N0.

This means that

(4.61) p(x,t)=
√

2
L

∞∑
a=0

sin
(
πax

L

)
〈ψa|p0〉e− π2a2t

DL , 〈ψa|p0〉=
√

2
L

∫
p(x,0)sin

(
πax

L

)
dx.

Note that p(x, t) vanishes in the limit t → ∞, due to the leaking through the boundaries.
The derivation for reflecting conditions is very similar. In this case, the boundary conditions are

J(0) = J(L) = 0, so that we need ∂xp(x, t)|0 = ∂xp(x, t)|x=L = 0, leading to

ψa(x) =

{
1√
L
, with eigenvalue µ0 = 0 a = 0,√
2
L

cos
(

aπx
L

)
, with eigenvalue µa = − π2a2

DL
a ∈ N.

This time

(4.62) p(x,t)= 1√
L

+
√

2
L

∞∑
a=1

cos
(
πax

L

)
〈ψa|p0〉e− π2a2t

DL , 〈ψa|p0〉=
√

2
L

∫
p(x,0)cos

(
πax

L

)
dx.

For t → ∞ this converges to limt→+∞ p(x, t) = 1/L which is indeed the stationary solution found
from ∂2

xπ(x) = 0 imposing the boundary condition ∂xπ(x)|x=0 = ∂xπ(x)|x=L = 0 and normalization∫ L

0 π(x) dx = 1. This shows that on a finite interval, diffusion converges to the uniform distribution.



CHAPTER 5

The Langevin equation

1. The Brownian motion revisited: the Langevin equation

A Brownian particle immersed in a fluid is subject to two forces, characterising the action
of the fluid on it: a viscous force, with friction coefficient γ > 0, representing the effect of the
resistance of the fluid to the motion of the particle; a random force η(t) which results from the
impact of the fluid’s molecules on the Brownian particle . Newton’s equation of motion for the
position Xt for the particle of mass m is therefore

m
d2 X
d t2

= −γ dX
d t

+ η,

or, upon introducing V := d X
d t ,

(5.1) m
dV
d t

= −γV + η.

From now on we will set to m = 1 for simplicity. Historically, the above equation constitutes
the first example of a Langevin equation or stochastic differential equation, i.e., a differential
equation involving stochastic processes. Solving a Langevin equation thus means determining
the statistical properties of the process Vt.

We will assume that the fluid (or thermal bath) is in a stationary state, so that
(1) E[η(t)] does not depend on time;
(2) E[η(t)η(t′)] depends only on the time difference t− t′.

Since in the absence of external forces, limt→∞ E[Vt] = 0 at stationarity, one must have
(5.2) E[η(t)] = 0.

Indeed, this ensures that, assuming that V0 = v0,
(5.3) ∂tE[V] = −γE[V] =⇒ E[Vt] = v0 e−γt

and
(5.4) lim

t→∞
E[Vt] = 0.

Denoting the noise autocorrelation function
(5.5) ⟪η(t+ τ)η(t)⟫ = E[η(t+ τ)η(t)] = C(τ),

in equilibrium, due to time-reversal symmetry, C(τ) must be an even function of its argument,
C(τ) = C(−τ), and is expected to decay for |τ | � τ0, for some τ0, referred to as the correlation
time, which is of the order of the mean time interval between successive collisions of the Brownian
particle with the fluid molecules. For reasons that we will appear clear below, we define

2D :=
∞∫

−∞

C(τ) d τ.

81
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If τ0 is much shorter than other characteristic times (e.g., τ0 � γ−1), C will have a narrow peak
around τ = 0, and can be approximated with
(5.6) E[VtVt′ ] = 2Dδ(t− t′)

1.1. Solution for given initial condition. As an ODE, the Langevin equation for the
Brownian motion is a first order linear differential equation, which is solved by integrating factors.
For the initial condition V0 = v0, we have

(5.7) Vt = v0 e−γt +
t∫

0

η(t′) e−γ(t−t′) d t′.

The statistical properties of Vt follow from those of the noise η(t), which is the only stochastic
piece in the solution. As we said, the average is E[Vt] = v0 e−γt. Using the above equations, the
velocity correlation function is then

Cv(t, t′) := ⟪VtVt′⟫ =
t∫

0

d t1

t′∫
0

d t2 e−γ(t−t1+t′−t2)

2Dδ(t1−t2)︷ ︸︸ ︷
E[η(t1)η(t2)]

= 2D
min(t,t′)∫

0

e−γ(t+t′−2t1) d t1

= D

γ

(
e−γ|t−t′| − e−γ(t+t′)

)
.

The upper bound of the integral in the second line has been obtained by noting that the double
integral in t1 and t2 is on a rectangular domain, [0, t] × [0, t′] but only takes contributions along
the diagonal t1 = t2, thus up to values of t1 equal to whichever is smaller between t and t′. For
large times, t, t′ � γ−1 we have

Cv(t, t′) → D

γ
e−γ|t−t′| ≡ Cv(|t− t′|)

which is indeed a function of the time difference only, as expected at stationarity. From the
above, we can calculate the average kinetic energy of the Brownian particle at equilibrium

E[E(V)] := lim
t→∞

E[V2(t)]
2

= D

2γ
.

Assimilating the Brownian particle to a molecule of an ideal gas, Einstein used the equipartition
theorem (see box below) to derive the relation

(5.8) 1
2
kBT = 1

2
E[V2] = D

2γ
=⇒ D

γ
= kBT.

Very remarkably, the relation
D = kBTγ = RT

NA
γ

links a quantity which is experimentally accessible on the macroscopic scale, D, to the microscopic
quantity, the Avogadro number NA, by means of the ideal gas constant1.

 At the beginning of the XX century, it was unclear whether atoms where real entities or a useful
tool to solve problems. Einstein’s relation was regarded as a proof of existence of atoms.

1Remember that NAkB = R.
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As we have noted studying the stationary solutions of the Fokker–Planck equation, Eq. (5.8)
is a statement of the Fluctuation-Dissipation Theorem, showing that the size of fluctuations
D and the damping γ (which have two opposite effects on the Brownian particle’s velocity)
must balance in equilibrium. The quantity D can be accessed experimentally as it builds up an
observable mean square displacement

E[(Xt − X0)2] = E


 t∫

0

Vt1 d t1

2 =
t∫

0

d t1

t∫
0

d t2E[Vt1Vt2 ]

=
t∫

0

d t1

t∫
0

d t2
[
v2

0 e−γ(t1+t2) +D

γ

(
e−γ|t1−t2| − e−γ(t1+t2)

)]

=
(
v2

0 − D

γ

)
(1 − e−γt)2

γ2 + 2D
γ2

(
t− 1 − e−γt

γ

)
.

(5.9)

For t � 1/γ,

E[(Xt − X0)2] ' 2D
γ2 t.

Note that in the opposite limit t � 1/γ

E[(Xt − X0)2] ' v2
0t

2

so on short timescales the particle describes a ballistic motion.

 The equipartition theorem Suppose that we have a free particle of mass m, travelling inside
a cube of side L in 3 dimensions. The variation of momentum along the x coordinate when hitting
elastically a wall is

∆px = 2mvx

where vx is the x-component of the particle’s velocity and px its momentum in the same direction. The
x-component of the force applied by the particle on the wall is thus

Fx = ∆px

∆t with ∆t = 2L
vx
.

The contribution to the pressure along the x direction is

Px = Fx

L2 = mv2
x

L3 = mv2
x

V
where V is the volume of the cube. Thus, the total pressure exerted by N particles in a cube, considering
their action is distributed on the three coordinates is

P = N
mE[V2]

3
where we have taken the average of V2 = V2

x + V2
y + V2

z. On the other hand, from the ideal gas law one
has

PV = NkBT

where as usual kB is the Boltzmann constant. Thus, in combination, we have
1
2mE[V2] = 3

2kBT

for three degrees of freedom. This is refereed to as the Equipartition theorem. It states that the average
thermal energy carried by each degree of freedom in equilibrium systems at temperature T is 1

2kBT .
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2. The noise term

2.1. Noise distribution. We have so far assumed

E[η(t)] = 0, E[η(t)η(t′)] = 2Dδ(t− t′).

One can characterize further the distribution of η by making additional assumptions. Noting
that η is the result of the effects of a great number of independent processes, it is plausible
to assume that it some sort of Gaussian character. However, η(t) is a function of time. How
to define a “Gaussian distribution” for a function? We can start discretizing the time span
t of a trajectory in little intervals of size τ = t/n, ti = iτ , i = 0, . . . , n, and think of η(t)
as sampled at these times. Letting ηi = η(ti) we can thus approximate the path η(t) with a
collection of variables η := (η1,η2, . . . ,ηn). We assume the elements of the vector being such that
E[ηiηj ] = 2D

τ δij , discretised version of the condition E[η(t)η(t′)] = 2Dδ(t− t′). The multivariate
Gaussian distribution for n variables with zero average is

p(η) = 1
(2π)n/2

√
detC

exp

−1
2
∑

ij

ηi[C−1]ijηj


≡ 1

(2π)n/2
√

detC
exp

(
−1

2
〈η|C−1|η〉

)
,

(5.10)

whereC is the covariance matrix, with elements Cij = E[ηiηj ]. To fix the value of these elements,
we note that, for a given function f(t), denoting fi = f(iτ), we want

(5.11) τ

n∑
i=0

fiE[ηiηk] t′=kτ∈(0,t)−−−−−−−→
t∫

0

f(s)E[η(s)η(t′)] d s ≡ 2Df(t′)

i.e., we want that τ
∑n

i=0 fiE[ηiηk] = 2Dfk. This is realised taking

E[ηiηj ] = Cij = 2D
τ
δij ⇒ [C−1]ij = τ

2D
δij .

Substituting into the general multivariate expression

(5.12) p(η) =
( τ

4πD

)n
2 exp

(
− τ

4D

n∑
i=1

η2
i

)
≡
( τ

4πD

)n
2 e− τ‖η‖2

4D .

Taking the continuous time limit τ → 0 and using Riemann approximation of an integral, we
can write

(5.13) p(η)
n∏

i=1
d ηi ∝ exp

− 1
4D

t∫
0

η2(t′) d t′
Dη(t), Dη(t) := lim

τ→0

t/τ∏
i=1

d ηi√
4πD/τ

.

Noise averages are then defined via the functional integration or path integral

(5.14) E[A[η(t)]] :=
∫
A[η(t)]ϱ[η(t)]Dη(t), ϱ[η(t)] ∝ exp

− 1
4D

t∫
0

η2(t′) d t′
 ,

where the integration is over a trajectory (or path) rather than over a variable. For all practical
purposes, this can be thought of as the limit of a multivariate integral, where the number of
integration variables is taken to infinity.
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2.2. Moments. The Gaussian assumption on the noise distribution allows us to simplify
the calculation of higher order moments, by virtue of Wick’s theorem, which applies to zero-mean
Gaussian variables η with covariance C.

 To derive the content of the theorem, let us start calculating the characteristic function of a p(η)
assuming, for a moment, a generic covariance C. For a general distribution p(η) we have

G(k) =
∫
p(η) ei〈k|η〉 dη = E[ei〈k|η〉]

=
∑

m1...mn

(ik1)m1 . . . (ikn)mn

m1!...mn! E[ηm1
1 . . . ηmn

n ]
(5.15)

so that each correlation E
[∏

i
η

mi
i

]
appears multiplied by a

∏
i
kmi

i . On the other hand, for zero-mean
Gaussian variables

G(k) =
∫

dη√
(2π)n detC

e− 1
2 〈η|C−1|η〉+i〈k|η〉 = e− 1

2 〈k|C|k〉

=
∏
pq

e
1
2 (ikp)(ikq)E[ηpηq ] =

∏
pq

[
1 + 1

2(ikp)(ikq)E[ηpηq] + . . .
](5.16)

Note that only terms with an even number of ks factors show up in (5.16), and only two-terms
correlations. Terms like E[ηaηbηc . . . ] in (5.15) corresponds to the combination of products of all
suitable pairs in (5.16). For example,

E[ηaηbηcηd] = E[ηaηb]E[ηcηd] + E[ηaηc]E[ηbηd] + E[ηaηd]E[ηbηc].
To summarise, for any set of k indices {ij}k

j=1,

E[ηi1ηi2 . . . ηi2k−1 ] =

{
0 if k = 2n+ 1 for some n∑

P

∏n

j=1 E[ηiP(2j−1)ηiP(2j) ] if k = 2n for some n

where the sum runs over all (2n)!
2nn! distinct pairings of 2n elementsa. For non-zero mean Gaussian

variables, one can apply Wick’s theorem to the shifted variable δη = η − E[η].

aThere are (2n)! permutations of the indices, but this has to be divided by the n! ordering of the pairs, which
is irrelevant; plus, the ordering of the elements inside each one of the n pairs is not relevant, and this is the
reason of the 2n in the denominator.

Wick’s theorem allows us to compute higher order moments of the stochastic process Vt. Let
us introduce

u(t) := Vt − E[Vt] =
t∫

0

η(τ) e−γ(t−τ) d τ.

We have that, for any n ∈ N,

(5.17) E
[
u2n+1(t)

]
=

2n+1∏
i=1

t∫
0

d ti

E

[2n+1∏
i=1

η(ti)

]
e−γ(2n+1)t−γ

∑
i

ti ≡ 0,
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and similarly

E
[
u2n(t)

]
=

 2n∏
i=1

t∫
0

d ti

E

[ 2n∏
i=1

η(ti)

]
e−γ(2n+1)t−γ

∑
i

ti

= (2n)!
2nn!

 t∫∫
0

d t1 d t2 e−γ(2t−t1−t2)

2Dδ(t1−t2)︷ ︸︸ ︷
E[η(t1)η(t2)]


n

= (2n)!
2nn!

2D
t∫

0

d t1 e−2γ(t−t1)

n

= (2n)!
2nn!

(
D

1 − e−2γt

γ

)n

.

(5.18)

From the moments, we can reconstruct the full distribution via the moment generating function.
According to our formulas above then

(5.19) E[uk(t)] =

{
0 if k = 2n+ 1
(2n)!
2nn!

(
D 1−e−2γt

γ

)n

if k = 2n+ 1.

Then, the generating function of u(t) is

Gu(k, t) =
∫
p(u, t) eiku du =

∞∑
n=0

(ik)nE[un(t)]
n!

=
∞∑

n=0
(ik)2nE[u2n(t)]

(2n)!

=
∞∑

n=0

1
n!

(
−k2D

1 − e−2γt

2γ

)n

= exp
(

−k2D
1 − e−2γt

2γ

)
;

(5.20)

by taking the inverse Fourier transform

p(u, t) = 1
2π

∞∫
−∞

Gu(k, t) e−ikv d k =
√

γ

2πD(1 − e−2γt)
exp

(
− γu2

2D(1 − e−2γt)

)
so that, replacing u → v − E[Vt] = v − v0 e−γt we obtain

p(v, t) =
√

γ

2πD(1 − e−2γt)
exp

(
−γ(v − v0 e−γt)2

2D(1 − e−2γt)

)
≡ p1|1(v, t|v0, 0).

Unsurprisingly, this coincides with the solution to the Fokker–Planck equation for the Ornstein–
Uhlenbeck process, which describes the evolution of the velocity of a Brownian particle (i.e. the
same process that is modelled by the Langevin equation (5.1)). For t � γ−1 this retrieves the
Maxwell distribution, upon identification of D/γ = kBT .

2.3. Noise averages. So far, all the noise averages we have calculated followed from the
assumptions E[η(t)] = 0 and E[η(t)η(t′)] = 2Dδ(t − t′). The Gaussian assumption on the
(functional) distribution, is useful to compute more complicated objects, for example E[η(t′)Vt].
This can be calculated by carrying out integration by parts:

E[Vtη(t′)] =
∫
η(t′)v(t) e− 1

4D

∫ t

0
η2(τ) d τ

Dη(t)

= −2D
∫
v(t)δ e− 1

4D

∫ t

0
η2(τ) d τ

δη(t′)
Dη(t)

= 2D
∫

δv(t)
δη(t′)

e− 1
4D

∫ t

0
η2(τ) d τ

Dη(t) = 2DE
[
δVt

δη(t′)

]
.

(5.21)
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Let us consider now a particle moving in presence of an additional perturbation h(t), so that the
equation of motion becomes

dV
d t

= −γV + η + h.

In this equation, η and h play the same role, hence taking functional derivatives of Vt with
respect to η(t′) or h(t′) is equivalent

δVt

δη(t′)
= δVt

δh(t′)
.

To show this explicitly, let us assume as usual the initial condition v(0) = v0. Then

Vt = v0 e−γt +
t∫

0

(η(τ) + h(τ)) e−γ(t−τ) d τ

and therefore we can introduce the response function R(t, t′), measuring how Vt typically changes
in response to an external stimulus h(t′),

(5.22) R(t, t′) := δ〈Vt〉
δh(t′)

=
t∫

0

δ(t′′ − t′) e−γ(t−τ) d τ = θ(t− t′) e−γ(t−t′) ≡ E
[
δVt

δη(t′)

]
The equal-time response R(t, t) is undefined, due to the discontinuity of the step function: dif-
ferent conventions can be used for θ(0), so prescriptions are needed to fix its value. Two common
ones are the Stratonovich convention,

(5.23) θ(0) = 1
2

=⇒ R(t, t) = 1
2

and the Itô convention,

(5.24) θ(0) = 0 =⇒ R(t, t) = 0

Itô then regards η(t) as acting immediately after that Vt has been updated, so the latter is
independent of the concomitant noise. Conversely, Stratonovich regards concomitant V and η as
“half-correlated”, i.e. their correlation is half of the noise autocorrelation function.

At this point, we can express E[Vtη(t′)] as

E
[
∂Vt

∂η(t′)

]
= ∂E[Vt]
∂h(t′)

=: R(t, t′) =⇒ E[Vtη(t′)] = 2DR(t, t′).

that is a new form of the fluctuation–dissipation theorem.

2.4. From the Langevin to the Fokker-Planck equation. Let us now establish the
link between the Langevin and the Fokker-Planck approaches. We recall that the Fokker-Planck
equation for a stochastic process Vt is given by

(5.25) ∂tp(v, t) = −∂v

[
a(1)(v, t)p(v, t)

]
+ 1

2
∂2

v [a(2)(v, t)p(v, t)]

with

a(1)(v, t) = lim
τ→0

E[Vt+τ − Vt]Vt=v

τ

a(2)(v, t) = lim
τ→0

E[(Vt+τ − Vt)2]Vt=v

τ

(5.26)
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Integrating V̇ = −γV + η over a small time interval τ , using the forward Euler’s integration
method

Vt+τ − Vt = −γ
t+τ∫
t

Vt′ d t′ +
t+τ∫
t

η(t′) d t′ ' −γVtτ +
t+τ∫
t

η(t′) d t′.

Taking the average at fixed Vt = v

a(1)(v, t) = lim
τ→0

E[Vt+τ − Vt]Vt=v

τ
= −γv.

Squaring, taking the average and using E[η(t)η(t′)] = 2Dδ(t− t′) we can also compute directly

E[(Vt+τ − Vt)2]Vt=v = γ2v2τ2 + 2Dτ =⇒ a(2)(v, t) = 2D

This results in the Fokker-Planck equation for the Ornstein-Uhlenbeck process
∂tp(v, t) = γ∂v(v p(v, t)) +D∂2

vp(v, t).

 As mentioned in Lectures 4, this is widely used in financial mathematics to model interest and
exchange rates, as it describes a random walk with a tendency to move back towards its average
value. In finance, T may represent the volatility caused by shocks, and γ the rate at which shocks
are dissipated.

3. Non-linear Langevin equations

The Langevin equation for the Brownian motion given in Eq. (5.1) is linear, as the drift is
a linear function of the random variable. Next, we consider Langevin equations with non-linear
drifts.

3.1. Non-linear drift, additive noise. We start considering Langevin equations for the
stochastic process Xt, with non-linear drifts, where the noise term is independent of the random
variable and simply added to the equation, as in (5.1):

dX
d t

= A(X) + η, E[η(t)] = 0, E[η(t)η(t′)] = 2Dδ(t− t′), D > 0.

This type of noise is commonly referred to as ‘additive’. In this case, we can calculate the drift
and diffusion coefficients similarly to the way we did for the linear Langevin equation. With the
usual assumption of Gaussian white noise, we obtain for the drift

∆X := Xt+τ − Xt =
t+τ∫
t

A(Xt′) d t′ +
t+τ∫
t

η(t′) d t′ =⇒ E[∆X]Xt=x = A(x)τ +O(τ2).

For the diffusion term

(5.27) E[(∆X)2]Xt=x=

A2(x)τ2︷ ︸︸ ︷
E


 t+τ∫

t

A(Xt′)dt′
2

Xt=x

+

use A(Xti
)=A(x)+A′(x)[Xti

−x]︷ ︸︸ ︷
2

t+τ∫
t

dt1

t+τ∫
t

dt2〈A(Xt1)η(t2)〉

+
t+τ∫
t

d t1

t+τ∫
t

d t2 〈η(t1)η(t2)〉 = 2Dτ +O(τ2),
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leading to
∂tp(x, t) = −∂x[A(x)p(x, t)] +D∂2

xp(x, t).
In particular, we already saw that if

(5.28) A(x) = −βD∂xH(x)

for some function H(x) and constant β, the steady state solution of the Fokker–Planck equation
has the Boltzmann form

π(x) = 1
Z

e−βH(x) .

By setting the kinetic coefficient Γ := βD, and by identifying β−1 = kBT , in this case we can
write the Langevin equation as

(5.29) Ẋ = −Γ∂xH(x) + η(t), E[η(t)] = 0, E[η(t)η(t′)] = 2ΓkBTδ(t− t′),

which describes a gradient-descent dynamics on the energy function H(x) in presence of some
noise.

 If the coefficient of the term η in the Langevin equation is non-constant, it is said that we have
“multiplicative” noise,
(5.30) Ẋ = A(X) +B(X)η, E[η(t)] = 0, E[η(t)η(t′)] = 2Dδ(t− t′), D > 0.
In the equation above, B(x) > 0 for all values of x. This Langevin equation equation can be mapped
to one with additive noise as follows

Ẋ
B(X) = A(X)

B(X) + η

and introducing the new variable

ẏ = Ẋ
B(X) ⇔ y =

X∫
dx
B(x) ≡ ϕ(X)

Note that ϕ′(x) = 1
B(x) > 0. We can define

A(ϕ−1(y))
B(ϕ−1(y)) =: A1(y)

and the Langevin equation can be rewritten again in the form
ẏ = A1(y) + η(t),

which we know corresponds to the Fokker–Planck equation for the density py of the variable y

∂tpy(y, t) = −∂y[A1(y)py(y, t)] +D∂2
xpy(y, t)

To recover the density p(x, t) we can start observing that

py(y, t) =
∫
p(x, t)δ(ϕ(x) − y) dx =

∫
dx p(x, t)δ(x− ϕ−1(y))

|ϕ′(ϕ−1(y))|

= p(ϕ−1(y), t)
|ϕ′(ϕ−1(y))| = p(ϕ−1(y), t)B(ϕ−1(y)),

(5.31)

i.e., py(y, t)
y=ϕ(x)−−−−−→ p(x, t)B(x). Using now that

∂

∂y
= ∂x

∂y

∂

∂x
= B(x) ∂

∂x

we can complete the rewriting of our equation as
∂t[B(x)p(x, t)] = −B(x)∂x[A1(ϕ(x))B(x)p(x, t)] +DB(x)∂x[B(x)∂x(B(x)p(x, t)]

= −B(x)∂x[A(x)p(x, t)] +DB(x)∂x[B(x)∂x(B(x)p(x, t)]
(5.32)
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which can be rewritten as
(5.33) ∂tp(x, t) = −∂x[(A(x) +DB(x)B′(x))p(x, t)] +D∂2

x[B2(x)p(x, t)].

In other words, a(1) = A + DBB′ and a(2) = DB2. The drift term is normally referred to as the
‘anomalous drift’, due to the extra term DBB′, which was not originally included in the original drift
of the Langevin equation.

 One can show that the above Fokker-Planck equation is compatible with the Stratonovich inter-
pretation of the noise, whereas in the Itô convention the drift in the Fokker–Planck equation consists
of only A. The source of the such ‘disagreement’ arises from the fact that the noise η(t) can be
regarded as a sequence of instantaneous ‘kinks’ on the system arriving at random times ti, causing
jumps in the random variable X. At every kink, it is not clear if the term B(X) in the Langevin
equation should be evaluated for the value that X takes before or right after the kink, or an average
(possibly weighted) of the two should be used. Integration of the Langevin equation thus requires a
prescription as we can get different results:

(5.34)
t+d t∫
t

B(Xτ )η(τ) d τ =

{
Itô B(Xt)

∫ t+d t

t
η(τ) d τ

Stratonovich B
(

Xt+Xt+d t

2

)∫ t+d t

t
η(τ) d τ.

The two prescriptions lead to different writings of the Fokker-Planck equation:
Stratonovich ∂tp(x, t) = −∂x[(A(x) +DB(x)B′(x))p(x, t)] +D∂2

x[B2(x)p(x, t)],

Itô ∂tp(x, t) = −∂x[A(x)p(x, t)] +D∂2
x[B2(x)p(x, t)].

(5.35)

Itô’s interpretation is seemingly incompatible with standard variable transformations (in fact, Itô’s
calculus is required to perform it). On the other hand, if the noise has a finite correlation time, the
equation of motion is non-singular, and one would expect to be able to carry out any transformation by
using standard rules of calculus. Hence, the Stratonovich convention seems appropriate when physical
noise with finite correlation time is considered. However, Itô’s convention is easily interpreted as a
Euler forward integration and it leads to simpler equations, so it is widely used with the idealised
(i.e., delta-correlated) noise.

It is easy to see that the two prescriptions lead to different values of the equal-time response
function, as anticipated in Lectures 4. For example, by considering the simple equation

Ẋ = Xη

one has
Stratonovich ∂tp(x, t) = −D∂x[xp(x, t)] +D∂2

x[x2p(x, t)] ⇒ ∂t〈X〉 = D〈X〉,

Itô ∂tp(x, t) = D∂2
x[x2p(x, t)] ⇒ ∂t〈X〉 = 0.

(5.36)

Inserting in the equation of motion, one has 〈Xtη(t)〉 = 0 according to the Itô prescription, and
〈Xtη(t)〉 6= 0 in the Stratonovich convention.

4. Many-particles systems

So far, we have considered stochastic processes described by one degree of freedom, X. We
consider now stochastic systems with many interacting degrees of freedom, described therefore
by a vectorial variable X.

4.1. Linear systems. We start by considering a system of N interacting units, labelled by
i = 1, . . . , N . The ‘units’ can be thought as charged Brownian particles, neurons in a neural
networks or species in an ecosystem. We will loosely call them ‘particles’. We assume that each
particle i can be described by a coordinate xi (this could be the position of a Brownian particle,
the action potential of a neuron or the population density of a specie) and we will assume that
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each coordinate evolves according to a Langevin dynamics with an independent zero-average
white noise, so for each i = 1, . . . , N

(5.37) Ẋi = −γXi +
∑

j

JijXj + ηi

with 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = 2Tδijδ(t− t′) ∀ i, j.

 The noiseless version of this model is one of the most popular models introduced in ecology to
study the stability of diverse ecosystems with many interacting specie, studied by Mark Gardner and
Ross Ashby in 1970 and by Robert May in 1972. Similiar, but noisy, models, with the replacement∑

k
JikXk →

∑
k
Jikg(Xk) for some sigmoid function g(x), have served as popular neural networks

models, as proposed by Haim Sompolinski, Andrea Crisanti, and Sommers in 1988, or, more recently,
to model financial markets Kartik Anand, Jonathan Khedair, and Reimer Kühn in 2017. Ecological
systems and banking systems indeed share important similarities, as pointed out by Andrew Haldane
and Robert May in 2011.

To study the system of coupled Langevin equations (5.37), it is convenient to write equations
in vector notation

∂t|X〉 = (J − γI)|X〉 + |η〉.
We will first look at symmetric interactions Jij = Jji and will comment later on asymmetric in-
teractions. If the Jij ’s are symmetric, then there exist a complete set of orthonormal eigenvectors
|va〉, a = 1, . . . , N , so that

J =
N∑

a=1
λa|va〉〈va|, 〈va|vb〉 = δab.

The matrix J is diagonalised by a similarity transformation
O−1JO = JD

where O is an orthogonal matrix, i.e., O−1 = O> whose columns are constituted by the eigen-
vectors of J , i.e., if we denote
(5.38) |ek〉 = (δki)N

i=1 = (0, . . . , 0, 1︸︷︷︸
position k

, 0, . . . , 0) ∈ RN ,

then O =
∑N

a=1 |va〉〈ea|. On the other hand, we have written

(5.39) JD =

 λ1 0 ... 0
0 λ2 ... 0
...

... . . . ...
0 0 ... λN

 =
∑

a

λa|ea〉〈ea|.

It is then convenient to transform the coordinates as
|y〉 = O>|X〉, |ξ〉 = O>|η〉

so that the equation of motion, in transformed coordinates reads as
∂t|y〉 = (JD − γI)|y〉 + |ξ〉

and can be described by a set of independent equations
(5.40) ẏa = (λa − γ)ya + ξa.

Each component ya is simply the projection of X over v,

(5.41) ya =
∑

i

Oiaxi =
∑

i

va
i xi = 〈va|x〉.
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On the other hand
(5.42) Xi =

∑
a

Oiaya =
∑

a

va
i ya.

Here we still have to specify the statistical properties of the transformed noise ξ. Each component
ξi is

(5.43) ξa =
∑

k

Okaηk =
∑

k

va
kηk = 〈va|η〉,

and therefore
E[ξa(t)] = 0 ∀a,

E[ξa(t)ξb(t′)] =
∑

ij

va
i v

b
jE[ηi(t)ηj(t′)] = 2Tδ(t− t′)

∑
i

va
i v

b
i = 2Tδabδ(t− t′)

Hence, each Langevin equation (5.40) reduces to the equation for the single Brownian particle
and can be solved independently using the same methods. In particular, each Langevin equation
is equivalent to a Fokker–Planck equation for the density pa of the variable ya,

∂tpa(y, t) = −∂y[(λa − γ)ypa(y, t)] + T∂2
ypa(y, t),

whose stationary solution is
pa(y) = 1

Za
e− 1

2T (γ−λa)y2

Recalling the relation between the original and the transformed variables |y〉 = O>|X〉, i.e.,
ya =

∑
i v

a
i Xi, we can express the distribution of X in terms of the distribution of y, which is in

factorised form p(y) =
∏

a pa(ya), due to the independence of the transformed variables

p(x) =
∏

a

[∫
dya pa(ya)δ (ya − 〈va|x〉)

]
=
∏

a

pa (〈va|x〉)

=
exp

[
− 1

2T

∑
a(γ − λa)〈x|va〉〈va|x〉

]∏
a Za

=
exp

[
− 1

2T 〈x| (γ
∑

a |va〉〈va| −
∑

a λa|va〉〈va|) |x〉
]

Z

= 1
Z

e− 1
2T 〈x|γI−J|x〉,

(5.44)

which is in Boltzmann form
Π(x) = 1

Z
e−βH(x),

with Hamiltonian
H(x) = 1

2
〈x|γI − J |x〉 = γ

2
∑

i

x2
i − 1

2
∑

ij

Jijxixj .

The convergence to the Boltzmann distribution is not surprsing as the Langevin dynamics in
Eq. (5.37) can be seen as a gradient-descent on the Hamiltonian H(x) in the presence of noise
(5.45) Ẋ = −∇H(X) + η.

During Lectures 4, we have shown that this type of dynamics converges to the Boltzmann dis-
tribution, for a single degree of freedom. The derivation above generalises this result to many
degrees of freedom.
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4.2. Correlation and response functions. It is possible to solve each Langevin equation
(5.40) independently from all the others, as it describes a Brownian motion of a single particle,
so that

ya(t) = ya(0) e−(γ−λa)t +
t∫

0

ηk(τ) e−(γ−λk)(t−τ) d τ,

and therefore

E[ya(t)ya(t′)] = y2
a(0) e−(γ−λa)(t+t′) +2T

min(t,t′)∫
0

e−(γ−λk)(t+t′−2τ) d τ

From these, we can calculate useful observables for the original system, such as the global cor-
relation and the response function,

C(t, t′) := 1
N

∑
i

(
E[Xi(t)Xi(t′)] − E[Xi(t)]E[Xi(t′)]

)
R(t, t′) := 1

N

∑
i

δE[Xi(t)]
δhi(t′)

∣∣∣
h=0

(5.46)

which give information on the global coherence of the system and its susceptibility to external
perturbations. From

(5.47) 1
N

∑
i

E[Xi(t)Xi(t′)] = 1
N

∑
i

∑
ab

va
i v

b
iE[ya(t)yb(t′)] = 1

N

∑
i

E[yi(t)yi(t′)],

where it has been used the fact that
∑

i v
a
i v

b
i = δab. Collecting all pieces we obtain then

C(t, t′) = 1
N

∑
a

2T
∫
dλ δ(λ− λa)

min(t,t′)∫
0

e−(γ−λ)(t+t′−2s) d a

= T
∑

λ

ρ(λ)
(

e−(γ−λ)|t−t′| − e−(γ−λ)(t+t′)
)(5.48)

where we have introduced the spectral density (i.e., the distribution of eigenvalues) of the inter-
action matrix

ρ(λ) = lim
N→∞

1
N

∑
a

δ(λ− λa).

Similarly, we obtain for the response function

(5.49) R(t, t′) =
∑

λ

ρ(λ)δE[Xλ(t)]
δhλ(t′)

∣∣∣
h=0

=
∑

λ

ρ(λ) e−(γ−λ)(t−t′) .

This shows that the system’s behavior is fully encoded in the spectral density of the interaction
matrix. In particular, one can see that small perturbations will be damped if the largest eigen-
value maxa λa is smaller than γ (this has indeed been related to qualitative stability in ecosys-
tems, economic models etc.). In addition we observe that for large t, t′, where the second term
in (5.48) vanishes, correlation and response functions are related by the fluctuation–dissipation
theorem

R(t, t′) = − 1
T

∂C(t, t′)
∂t

.

In conclusion, we have shown that for systems with two-body symmetric interactions and linear
drift, the Langevin dynamics can be solved by diagonalizing the interaction matrix, the system
converges to the Boltzmann distribution and FDT is satisfied. For asymmetric interactions, we
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have a more complex scenario, due to the presence of complex eigenvalues (normally leading to
oscillations) and left and right eigenvectors. However, one can still prove convergence to a steady
state which is not Boltzmann, where FDT is generally violated.

5. Numerical integration

We conclude this chapter by illustrating how to numerically integrate stochastic differential
equations like

Ẋ = A(X, t) +B(X, t)η.
The easiest way is to discretize time according to Itô’s convention
(5.50) Xt+τ = Xt +A(X, t)τ +B(X, t)η̃(t),

where we have defined the integrated noise η̃(t) =
∫ t+τ

t
η(t′) d t′. This satisfies

(5.51) Eη̃(t)] = 0 E[η̃(t)η̃(t′)] = 2Tτδ(t− t′),
and is Gaussian if η was Gaussian. In the case of Gaussian noise, we can therefore consider the
following equation

Xt+τ = Xt + τA(X, t) +B(X, t)
√

2Tτζ,
where ζ is Gaussian with zero mean and unit variance. This suggests the following algorithm:

(1) Initialize t = 0, x = x0, desired initial condition. Set τ to a small number.
(2) Calculate A(x, t), B(x, t). Draw ζ ∼ N(0, 1), i.e., Gaussian with zero mean and unit

variance.
(3) Update x+A(x, t)τ +B(x, t)

√
2Tτζ 7→ x .

(4) Set t+ τ 7→ t and go back to (2).



APPENDIX A

The method of characteristics

The method of characteristics is a method for solving linear, semilinear, or quasilinear PDEs
of the first order, i.e., equations for the function u(x), u : Rd → R, in the form

(A.1)
d∑

j=1
aj(x, u) ∂u

∂xj
= f (x, u) ,

where aj and f are some known functions of d + 1 variables. The main goal of the method is
to find special curves, called characteristics, along which the PDE becomes a family of ODE.
Once the ODEs are found and solved along the characteristics curves they can be related to the
solution of the original PDE. The rationale of this idea comes from the observation that we can
imagine the solution u(x) of the problem as a hypersurface S ⊂ Rd+1, identified by the equation
u = u(x).

x1

x2

u

u(0, x2)

x1 = 0

x(s)

(x(s), u(s))

v

τ

X

Given a point (x, u(x)) of this surface, the vector

τ :=
(
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xd
,−1

)
≡ (∇u,−1)

is orthogonal to S in x. On the other hand, Eq. (A.1) says that the vector
v = (a1(x, u), . . . , ad(x, u), f(x, u))

is orthogonal to the vector τ : indeed, the equation can be written as 〈v|τ 〉 = 0. This means that
v is tangent to S, and the surface S can be thought of as the union of many curves going through
the surface so that for each point of the surface (X, u(X)) there is only one curve (x(s), u(s))
parametrised by s ∈ R passing through it and solving the set of equations

dxi

d s
= ai(x, u), for i = 1, . . . , d du

d s
= f(x, u)

95
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that can be rewritten in the form of Lagrange-Charpit equations

(A.2) dx1

a1 (x, u)
= · · · = dxd

ad (x, u)
= du
f (x, u)

.

Equations (A.2) are called characteristic equations and describe d-parametric family (coming
from d integrations) of characteristic curves. If the PDE is equipped with some initial or boundary
data, then one can eliminate all the constants and find unique solution for (A.1). Otherwise,
general solution can be written by assuming that all except one free parameters are expressed as
some unknown functions of a last one.

 Example Consider the initial value problem for Burgers’ equation{
∂tu+ u∂xu = 0,
u (x, 0) = ϕ(x).

The characteristic equations are given by
d t
d s = 1 dx

d s = u
du
d s = 0,

with initial conditions
(A.3) t(0) = 0, x(0) = X, u(0) = ϕ(X),
i.e., for s = 0 (at the origin of the characteristic curve) x takes the value X, t = 0 and u ≡ ϕ(x) = ϕ(X).
All equations are immediately solved as

t = s, x = us+X, u = ϕ(X),
implying that X = x− tu and therefore u satisfies the implicit equation

u(x, t) = ϕ (x− u(x, t)t) .
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